Do you want to publish a course? Click here

A general-mass scheme for prompt charm production at hadron colliders

130   0   0.0 ( 0 )
 Added by Keping Xie
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In these proceedings, we apply the recently developed S-ACOT-MPS factorization scheme at the next-to-leading order to prompt charm production at hadron colliders. It provides a good agreement with experimental data on charm meson production measured by LHCb at 7 and 13 TeV. The low-$p_T$ data are on the margins of the theoretical error bands, emphasizing the importance of including contributions beyond the next-to-leading order.



rate research

Read More

The production of the X(3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high $p_T$ implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
160 - G. Bozzi 2007
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.
We present next-to-next-to-leading-order (NNLO) QCD corrections to the production of three isolated photons in hadronic collisions at the fully differential level. We employ qT subtraction within MATRIX and an efficient implementation of analytic two-loop amplitudes in the leading-colour approximation to achieve the first on-the-fly calculation for this process at NNLO accuracy. Numerical results are presented for proton-proton collisions at energies ranging from 7 TeV to 100 TeV. We find full agreement with the 8 TeV results of arXiv:1911.00479 and confirm that NNLO corrections are indispensable to describe ATLAS 8 TeV data. In addition, we demonstrate the significance of NNLO corrections for future precision studies of triphoton production at higher collision energies.
We revisit scalar leptoquark pair-production at hadron colliders and significantly improve the level of precision of the cross section calculations. Apart from QCD contributions, we include lepton t-channel exchange diagrams that turn out to be relevant in the light of the recent B-anomalies. We evaluate all contributions at next-to-leading-order accuracy in QCD and resum, in the threshold regime, soft-gluon radiation at next-to-next-to-leading logarithmic accuracy. Our predictions consist hence in the most precise leptoquark cross section calculations available to date, and are necessary for the best exploitation of leptoquark searches at the LHC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا