Do you want to publish a course? Click here

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer

97   0   0.0 ( 0 )
 Added by Tianwei Lin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Fast arbitrary neural style transfer has attracted widespread attention from academic, industrial and art communities due to its flexibility in enabling various applications. Existing solutions either attentively fuse deep style feature into deep content feature without considering feature distributions, or adaptively normalize deep content feature according to the style such that their global statistics are matched. Although effective, leaving shallow feature unexplored and without locally considering feature statistics, they are prone to unnatural output with unpleasing local distortions. To alleviate this problem, in this paper, we propose a novel attention and normalization module, named Adaptive Attention Normalization (AdaAttN), to adaptively perform attentive normalization on per-point basis. Specifically, spatial attention score is learnt from both shallow and deep features of content and style images. Then per-point weighted statistics are calculated by regarding a style feature point as a distribution of attention-weighted output of all style feature points. Finally, the content feature is normalized so that they demonstrate the same local feature statistics as the calculated per-point weighted style feature statistics. Besides, a novel local feature loss is derived based on AdaAttN to enhance local visual quality. We also extend AdaAttN to be ready for video style transfer with slight modifications. Experiments demonstrate that our method achieves state-of-the-art arbitrary image/video style transfer. Codes and models are available.



rate research

Read More

Arbitrary style transfer aims to synthesize a content image with the style of an image to create a third image that has never been seen before. Recent arbitrary style transfer algorithms find it challenging to balance the content structure and the style patterns. Moreover, simultaneously maintaining the global and local style patterns is difficult due to the patch-based mechanism. In this paper, we introduce a novel style-attentional network (SANet) that efficiently and flexibly integrates the local style patterns according to the semantic spatial distribution of the content image. A new identity loss function and multi-level feature embeddings enable our SANet and decoder to preserve the content structure as much as possible while enriching the style patterns. Experimental results demonstrate that our algorithm synthesizes stylized images in real-time that are higher in quality than those produced by the state-of-the-art algorithms.
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on an arbitrary style image. In this task the content-style feature transformation is a critical component for a proper fusion of features. Existing feature transformation algorithms often suffer from unstable learning, loss of content and style details, and non-natural stroke patterns. To mitigate these issues, this paper proposes a parameter-free algorithm, Style Projection, for fast yet effective content-style transformation. To leverage the proposed Style Projection~component, this paper further presents a real-time feed-forward model for arbitrary style transfer, including a regularization for matching the content semantics between inputs and outputs. Extensive experiments have demonstrated the effectiveness and efficiency of the proposed method in terms of qualitative analysis, quantitative evaluation, and user study.
Neural Style Transfer (NST) has quickly evolved from single-style to infinite-style models, also known as Arbitrary Style Transfer (AST). Although appealing results have been widely reported in literature, our empirical studies on four well-known AST approaches (GoogleMagenta, AdaIN, LinearTransfer, and SANet) show that more than 50% of the time, AST stylized images are not acceptable to human users, typically due to under- or over-stylization. We systematically study the cause of this imbalanced style transferability (IST) and propose a simple yet effective solution to mitigate this issue. Our studies show that the IST issue is related to the conventional AST style loss, and reveal that the root cause is the equal weightage of training samples irrespective of the properties of their corresponding style images, which biases the model towards certain styles. Through investigation of the theoretical bounds of the AST style loss, we propose a new loss that largely overcomes IST. Theoretical analysis and experimental results validate the effectiveness of our loss, with over 80% relative improvement in style deception rate and 98% relatively higher preference in human evaluation.
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been proven adequate to transfer a single style from relatively simple images, they are usually not capable of effectively handling more complex styles, producing significant artifacts, as well as reducing the quality of the synthesized textures in the stylized image. To overcome these limitations, in this paper we propose a novel universal NST approach that separately models each sub-style that exists in a given style image (or a collection of style images). This allows for better modeling the subtle style differences within the same style image and then using the most appropriate sub-style (or mixtures of different sub-styles) to stylize the content image. The ability of the proposed approach to a) perform a wide range of different stylizations using the sub-styles that exist in one style image, while giving the ability to the user to appropriate mix the different sub-styles, b) automatically match the most appropriate sub-style to different semantic regions of the content image, improving existing state-of-the-art universal NST approaches, and c) detecting and transferring the sub-styles from collections of images are demonstrated through extensive experiments.
108 - Rujie Yin 2016
This paper presents a content-aware style transfer algorithm for paintings and photos of similar content using pre-trained neural network, obtaining better results than the previous work. In addition, the numerical experiments show that the style pattern and the content information is not completely separated by neural network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا