Do you want to publish a course? Click here

MPI: Multi-receptive and Parallel Integration for Salient Object Detection

131   0   0.0 ( 0 )
 Added by Han Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The semantic representation of deep features is essential for image context understanding, and effective fusion of features with different semantic representations can significantly improve the models performance on salient object detection. In this paper, a novel method called MPI is proposed for salient object detection. Firstly, a multi-receptive enhancement module (MRE) is designed to effectively expand the receptive fields of features from different layers and generate features with different receptive fields. MRE can enhance the semantic representation and improve the models perception of the image context, which enables the model to locate the salient object accurately. Secondly, in order to reduce the reuse of redundant information in the complex top-down fusion method and weaken the differences between semantic features, a relatively simple but effective parallel fusion strategy (PFS) is proposed. It allows multi-scale features to better interact with each other, thus improving the overall performance of the model. Experimental results on multiple datasets demonstrate that the proposed method outperforms state-of-the-art methods under different evaluation metrics.

rate research

Read More

Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi-scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field. The state-of-the-art (SOTA) methods have a tendency to become deeper and more complex, which easily homogenize their learned deep features, resulting in a clear performance bottleneck. In sharp contrast to the conventional ``deeper schemes, this paper proposes a ``wider network architecture which consists of parallel sub networks with totally different network architectures. In this way, those deep features obtained via these two sub networks will exhibit large diversity, which will have large potential to be able to complement with each other. However, a large diversity may easily lead to the feature conflictions, thus we use the dense short-connections to enable a recursively interaction between the parallel sub networks, pursuing an optimal complementary status between multi-model deep features. Finally, all these complementary multi-model deep features will be selectively fused to make high-performance salient object detections. Extensive experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.
RGB-thermal salient object detection (SOD) aims to segment the common prominent regions of visible image and corresponding thermal infrared image that we call it RGBT SOD. Existing methods dont fully explore and exploit the potentials of complementarity of different modalities and multi-type cues of image contents, which play a vital role in achieving accurate results. In this paper, we propose a multi-interactive dual-decoder to mine and model the multi-type interactions for accurate RGBT SOD. In specific, we first encode two modalities into multi-level multi-modal feature representations. Then, we design a novel dual-decoder to conduct the interactions of multi-level features, two modalities and global contexts. With these interactions, our method works well in diversely challenging scenarios even in the presence of invalid modality. Finally, we carry out extensive experiments on public RGBT and RGBD SOD datasets, and the results show that the proposed method achieves the outstanding performance against state-of-the-art algorithms. The source code has been released at:https://github.com/lz118/Multi-interactive-Dual-decoder.
The transformer networks are particularly good at modeling long-range dependencies within a long sequence. In this paper, we conduct research on applying the transformer networks for salient object detection (SOD). We adopt the dense transformer backbone for fully supervised RGB image based SOD, RGB-D image pair based SOD, and weakly supervised SOD within a unified framework based on the observation that the transformer backbone can provide accurate structure modeling, which makes it powerful in learning from weak labels with less structure information. Further, we find that the vision transformer architectures do not offer direct spatial supervision, instead encoding position as a feature. Therefore, we investigate the contributions of two strategies to provide stronger spatial supervision through the transformer layers within our unified framework, namely deep supervision and difficulty-aware learning. We find that deep supervision can get gradients back into the higher level features, thus leads to uniform activation within the same semantic object. Difficulty-aware learning on the other hand is capable of identifying the hard pixels for effective hard negative mining. We also visualize features of conventional backbone and transformer backbone before and after fine-tuning them for SOD, and find that transformer backbone encodes more accurate object structure information and more distinct semantic information within the lower and higher level features respectively. We also apply our model to camouflaged object detection (COD) and achieve similar observations as the above three SOD tasks. Extensive experimental results on various SOD and COD tasks illustrate that transformer networks can transform SOD and COD, leading to new benchmarks for each related task. The source code and experimental results are available via our project page: https://github.com/fupiao1998/TrasformerSOD.
125 - Shuhan Chen , Xiuli Tan , Ben Wang 2018
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا