Do you want to publish a course? Click here

Chandra observations of nova KT Eridani in outburst

379   0   0.0 ( 0 )
 Added by Songpeng Pei
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse here four observations of nova KT Eri (Nova Eri 2009) done with the Chandra High Resolution Camera Spectrometer (HRC-S) and the Low Energy Transmission Grating (LETG) in 2010, from day 71 until day 159 after the optical maximum, in the luminous supersoft X-ray phase. The spectrum presents many absorption features with a large range of velocity, from a few hundred km s$^{-1}$ to 3100 km s$^{-1}$ in the same observation, and a few prominent emission features, generally redshifted by more than 2000 km s$^{-1}$. Although the uncertainty on the distance and the WD luminosity from the approximate fit do not let us rule out a larger absolute luminosity than our best estimate of $simeq 5 times 10^{37}$ erg s$^{-1}$, it is likely that we observed only up to $simeq$40% of the surface of the white dwarf, which may have been partially hidden by clumpy ejecta. Our fit with atmospheric models indicate a massive white dwarf in the 1.15-1.25 M$_odot$ range. A thermal spectrum originating in the ejecta appears to be superimposed on the white dwarf spectrum. It is complex, has more than one component and may be due to a mixture of photoionized and shock ionized outflowing material. We confirm that the $simeq$35 s oscillation that was reported earlier, was detected in the last observation, done on day 159 of the outburst.



rate research

Read More

Modelling the morphology of a nova outburst provides valuable information on the shaping mechanism in operation at early stages following the outburst. We performed morpho-kinematical studies, using {sc shape}, of the evolution of the Halpha line profile following the outburst of the nova KT Eridani. We applied a series of geometries in order to determine the morphology of the system. The best fit morphology was that of a dumbbell structure with a ratio between the major to minor axis of 4:1, with an inclination angle of 58$^{+6}_{-7}$ degrees and a maximum expansion velocity of 2800$pm$200 km/s. Although, we found that it is possible to define the overall structure of the system, the radial density profile of the ejecta is much more difficult to disentangle. Furthermore, morphology implied here may also be consistent with the presence of an evolved secondary as suggested by various authors.
125 - N.R. Deacon 2014
Nova Delphini 2013 was identified on the 14th of August 2013 and eventually rose to be a naked eye object. We sought to study the behaviour of the object in the run-up to outburst and to compare it to the pre-outburst photometric characteristics of other novae. We searched the Pan-STARRS 1 datastore to identify pre-outburst photometry of Nova Del 2013 and identified twenty-four observations in the 1.2 years before outburst. The progenitor of Nova Delphini showed variability of a few tenths of a magnitude but did not brighten significantly in comparison with archival plate photometry. We also found that the object did not vary significantly on the approximately half hour timescale between pairs of Pan-STARRS 1 observations.
85 - Gavin Ramsay 2016
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Pegs transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.
We report on NuSTAR observations of the Intermediate Polar GK Persei which also behaves as a Dwarf Nova. It exhibited a Dwarf Nova outburst in 2015 March-April. The object was observed in 3-79 keV X-rays with NuSTAR, once at the outburst peak, and again in 2015 September during quiescence. The 5-50 keV flux during the outburst was 26 times higher than that during the quiescence. With a multi-temperature emission model and a reflection model, we derived the post-shock temperature as 19.2 +/- 0.7 keV in the outburst, and 38.5 +4.1/-3.6 keV in the quiescence. This temperature difference is considered to reflect changes in the radius at which the accreting matter, forming an accretion disk, is captured by the magnetosphere of the white dwarf (WD). Assuming that this radius scales as the power of -2/7 of the mass accretion rate, and utilizing the two temperature measurements, as well as the standard mass-radius relation of WDs, we determined the WD mass in GK Persei as 0.90 +/- 0.06 solar masses. The magnetic field is estimated as 4*10^5 G.
Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf which is reprocessed through the ejected material. Recent studies with the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt gamma-ray emission. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories to study the unknown efficiency of particle acceleration in shocks. Here we report gamma-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in gamma-rays. The gamma-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf. The ratio of gamma-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be ~0.005, favouring hadronic models for the gamma-ray emission. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا