Do you want to publish a course? Click here

Impact of Aliasing on Generalization in Deep Convolutional Networks

223   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We investigate the impact of aliasing on generalization in Deep Convolutional Networks and show that data augmentation schemes alone are unable to prevent it due to structural limitations in widely used architectures. Drawing insights from frequency analysis theory, we take a closer look at ResNet and EfficientNet architectures and review the trade-off between aliasing and information loss in each of their major components. We show how to mitigate aliasing by inserting non-trainable low-pass filters at key locations, particularly where networks lack the capacity to learn them. These simple architectural changes lead to substantial improvements in generalization on i.i.d. and even more on out-of-distribution conditions, such as image classification under natural corruptions on ImageNet-C [11] and few-shot learning on Meta-Dataset [26]. State-of-the art results are achieved on both datasets without introducing additional trainable parameters and using the default hyper-parameters of open source codebases.



rate research

Read More

Recent results suggest that reinitializing a subset of the parameters of a neural network during training can improve generalization, particularly for small training sets. We study the impact of different reinitialization methods in several convolutional architectures across 12 benchmark image classification datasets, analyzing their potential gains and highlighting limitations. We also introduce a new layerwise reinitialization algorithm that outperforms previous methods and suggest explanations of the observed improved generalization. First, we show that layerwise reinitialization increases the margin on the training examples without increasing the norm of the weights, hence leading to an improvement in margin-based generalization bounds for neural networks. Second, we demonstrate that it settles in flatter local minima of the loss surface. Third, it encourages learning general rules and discourages memorization by placing emphasis on the lower layers of the neural network. Our takeaway message is that the accuracy of convolutional neural networks can be improved for small datasets using bottom-up layerwise reinitialization, where the number of reinitialized layers may vary depending on the available compute budget.
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.
We investigate the relationship between the frequency spectrum of image data and the generalization behavior of convolutional neural networks (CNN). We first notice CNNs ability in capturing the high-frequency components of images. These high-frequency components are almost imperceptible to a human. Thus the observation leads to multiple hypotheses that are related to the generalization behaviors of CNN, including a potential explanation for adversarial examples, a discussion of CNNs trade-off between robustness and accuracy, and some evidence in understanding training heuristics.
While the depth of convolutional neural networks has attracted substantial attention in the deep learning research, the width of these networks has recently received greater interest. The width of networks, defined as the size of the receptive fields and the density of the channels, has demonstrated crucial importance in low-level vision tasks such as image denoising and restoration. However, the limited generalization ability, due to the increased width of networks, creates a bottleneck in designing wider networks. In this paper, we propose the Deep Regulated Convolutional Network (RC-Net), a deep network composed of regulated sub-network blocks cascaded by skip-connections, to overcome this bottleneck. Specifically, the Regulated Convolution block (RC-block), featured by a combination of large and small convolution filters, balances the effectiveness of prominent feature extraction and the generalization ability of the network. RC-Nets have several compelling advantages: they embrace diversified features through large-small filter combinations, alleviate the hazy boundary and blurred details in image denoising and super-resolution problems, and stabilize the learning process. Our proposed RC-Nets outperform state-of-the-art approaches with significant performance gains in various image restoration tasks while demonstrating promising generalization ability. The code is available at https://github.com/cswin/RC-Nets.
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts. However, several recent breakthroughs in transfer learning suggest that these networks can cope with severe distribution shifts and successfully adapt to new tasks from a few training examples. In this work we study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time and investigate the impact of the pre-training data size, the model scale, and the data preprocessing pipeline. We find that increasing both the training set and model sizes significantly improve the distributional shift robustness. Furthermore, we show that, perhaps surprisingly, simple changes in the preprocessing such as modifying the image resolution can significantly mitigate robustness issues in some cases. Finally, we outline the shortcomings of existing robustness evaluation datasets and introduce a synthetic dataset SI-Score we use for a systematic analysis across factors of variation common in visual data such as object size and position.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا