Do you want to publish a course? Click here

Advances in IceCube ice modelling and what to expect from the Upgrade

170   0   0.0 ( 0 )
 Added by Martin Rongen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The IceCube Neutrino Observatory instruments about 1 km$^3$ of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light from relativistic, charged particles. Most IceCube science goals rely on precise understanding and modelling of the optical properties of the instrumented ice. A peculiar light propagation effect observed by IceCube is an anisotropic attenuation, which is aligned with the local flow of the ice. Recent efforts have shown this effect is most likely due to curved photon trajectories resulting from the asymmetric light diffusion in the birefringent polycrystalline microstructure of the ice. This new model can be optimized by adjusting the average orientation, size and shape of the ice crystals. We present the parametrization of the birefringence effect in our photon propagation simulation, the fitting procedures and results. The anticipated potential of calibration instrumentation in the upcoming IceCube Upgrade to improve on known shortcomings of the current ice modelling is also discussed.



rate research

Read More

Many dynamical models of the Milky Way halo require assumptions that the distribution function of a tracer population should be independent of time (i.e., a steady state distribution function) and that the underlying potential is spherical. We study the limitations of such modelling by applying a general dynamical model with minimal assumptions to a large sample of galactic haloes from cosmological $N$-body and hydrodynamical simulations. Using dark matter particles as dynamical tracers, we find that the systematic uncertainties in the measured mass and concentration parameters typically have an amplitude of 25% to 40%. When stars are used as tracers, however, the systematic uncertainties can be as large as a factor of $2-3$. The systematic uncertainties are not reduced by increasing the tracer sample size and vary stochastically from halo to halo. These systematic uncertainties are mostly driven by underestimated statistical noise caused by correlated phase-space structures that violate the steady state assumption. The number of independent phase-space structures inferred from the uncertainty level sets a limiting sample size beyond which a further increase no longer significantly improves the accuracy of dynamical inferences. The systematic uncertainty level is determined by the halo merger history, the shape and environment of the halo. Our conclusions apply generally to any spherical steady-state model.
Using hydrodynamical simulations, we study how well the underlying gravitational potential of a galaxy cluster can be modelled dynamically with different types of tracers. In order to segregate different systematics and the effects of varying estimator performances, we first focus on applying a generic minimal assumption method (oPDF) to model the simulated haloes using the full 6-D phasespace information. We show that the halo mass and concentration can be recovered in an ensemble unbiased way, with a stochastic bias that varies from halo to halo, mostly reflecting deviations from steady state in the tracer distribution. The typical systematic uncertainty is $sim 0.17$ dex in the virial mass and $sim 0.17$ dex in the concentration as well when dark matter particles are used as tracers. The dynamical state of satellite galaxies are close to that of dark matter particles, while intracluster stars are less in a steady state, resulting in a $sim$ 0.26 dex systematic uncertainty in mass. Compared with galactic haloes hosting Milky-Way-like galaxies, cluster haloes show a larger stochastic bias in the recovered mass profiles. We also test the accuracy of using intracluster gas as a dynamical tracer modelled through a generalised hydrostatic equilibrium equation, and find a comparable systematic uncertainty in the estimated mass to that using dark matter. Lastly, we demonstrate that our conclusions are largely applicable to other steady-state dynamical models including the spherical Jeans equation, by quantitatively segregating their statistical efficiencies and robustness to systematics. We also estimate the limiting number of tracers that leads to the systematics-dominated regime in each case.
The IceCube Neutrino Observatory at the geographic South Pole instruments a gigaton of glacial Antarctic ice with over 5000 photosensors. The detector, by now running for over a decade, will be upgraded with seven new densely instrumented strings. The project focuses on the improvement of low-energy and oscillation physics sensitivities as well as re-calibration of the existing detector. Over the last few years we developed a Precision Optical Calibration Module (POCAM) providing self-monitored, isotropic, nanosecond, light pulses for optical calibration of large-volume detectors. Over 20 next-generation POCAMs will be calibrated and deployed in the IceCube Upgrade in order to reduce existing detector systematics. We report a general overview of the POCAM instrument, its performance and calibration procedures.
121 - Aya Ishihara 2019
The IceCube Neutrino Observatory at the geographic South Pole has reached a number of milestones in the field of neutrino astrophysics. The achievements of IceCube include the discovery of a high-energy astrophysical neutrino flux, and the temporal and directional correlation of neutrinos with a flaring blazar. The IceCube Upgrade, which will be constructed in the 2022/23 Antarctic Summer season, is the next stage of the IceCube project. The IceCube Upgrade consists of seven new columns of photosensors, densely embedded near the bottom center of the existing cubic-kilometer-scale IceCube Neutrino Observatory. An improved atmospheric neutrino event selection efficiency and reconstruction at a few GeV can be achieved with the dense infill of the Upgrades photosensor array. The Upgrade will provide world-leading sensitivity to neutrino oscillations and will enable IceCube to take unique measurements of tau neutrino appearance with a high precision. Furthermore, the new array will also improve the existing IceCube detector. The Upgrade strings will include new calibration devices designed to deepen the knowledge of the optical properties of glacial ice and the detector response. The improved calibration resulting from the Upgrade will be applied to the entire archive of IceCube data collected over the last 10 years, improving the angular and spatial resolution of the detected astrophysical neutrino events. Finally, the Upgrade represents the first stage in the development of IceCube-Gen2, the next-generation neutrino telescope at the South Pole.
Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا