Do you want to publish a course? Click here

Analysis of nonconforming IFE methods and a new scheme for elliptic interface problems

119   0   0.0 ( 0 )
 Added by Haifeng Ji
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using integral-value degrees of freedom for solving elliptic interface problems. We show that those IFE methods can only achieve suboptimal convergence rates (i.e., $O(h^{1/2})$ in the $H^1$ norm and $O(h)$ in the $L^2$ norm) if the tangential derivative of the exact solution and the jump of the coefficient are not zero on the interface. A nontrivial counter example is also provided to support our theoretical analysis. To recover the optimal convergence rates, we develop a new nonconforming IFE method with additional terms locally on interface edges. The unisolvence of IFE basis functions is proved on arbitrary triangles. Furthermore, we derive the optimal approximation capabilities of both the Crouzeix-Raviart and the rotated-$Q_1$ IFE spaces for interface problems with variable coefficients via a unified approach different from multipoint Taylor expansions. Finally, optimal error estimates in both $H^1$- and $L^2$- norms are proved and confirmed with numerical experiments.



rate research

Read More

In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on each side of the interface are separately expanded in the standard nonconforming piecewise linear polynomials and the piecewise constant polynomials, respectively. Harmonic weighted fluxes and arithmetic fluxes are used across the interface and cut edges (segment of the edges cut by the interface), respectively. Extra stabilization terms involving velocity and pressure are added to ensure the stable inf-sup condition. We show a priori error estimates under additional regularity hypothesis. Moreover, the errors {in energy and $L^2$ norms for velocity and the error in $L^2$ norm for pressure} are robust with respect to the viscosity {and independent of the location of the interface}. Results of numerical experiments are presented to {support} the theoretical analysis.
195 - Hailong Guo , Xu Yang 2021
In this paper, we propose a deep unfitted Nitsche method for computing elliptic interface problems with high contrasts in high dimensions. To capture discontinuities of the solution caused by interfaces, we reformulate the problem as an energy minimization involving two weakly coupled components. This enables us to train two deep neural networks to represent two components of the solution in high-dimensional. The curse of dimensionality is alleviated by using the Monte-Carlo method to discretize the unfitted Nitsche energy function. We present several numerical examples to show the efficiency and accuracy of the proposed method.
86 - Baiying Dong , Xiufang Feng , 2019
Almost all materials are anisotropic. In this paper, interface relations of anisotropic elliptic partial differential equations involving discontinuities across interfaces are derived in two and three dimensions. Compared with isotropic cases, the invariance of partial differential equations and the jump conditions under orthogonal coordinates transformation is not valid anymore. A systematic approach to derive the interface relations is established in this paper for anisotropic elliptic interface problems, which can be important for deriving high order accurate numerical methods.
A general analysis framework is presented in this paper for many different types of finite element methods (including various discontinuous Galerkin methods). For second order elliptic equation, this framework employs $4$ different discretization variables, $u_h, bm{p}_h, check u_h$ and $check p_h$, where $u_h$ and $bm{p}_h$ are for approximation of $u$ and $bm{p}=-alpha abla u$ inside each element, and $ check u_h$ and $check p_h$ are for approximation of residual of $u$ and $bm{p} cdot bm{n}$ on the boundary of each element. The resulting 4-field discretization is proved to satisfy inf-sup conditions that are uniform with respect to all discretization and penalization parameters. As a result, most existing finite element and discontinuous Galerkin methods can be analyzed using this general framework by making appropriate choices of discretization spaces and penalization parameters.
147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulations. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا