No Arabic abstract
Recently published graph neural networks (GNNs) show promising performance at social event detection tasks. However, most studies are oriented toward monolingual data in languages with abundant training samples. This has left the more common multilingual settings and lesser-spoken languages relatively unexplored. Thus, we present a GNN that incorporates cross-lingual word embeddings for detecting events in multilingual data streams. The first exploit is to make the GNN work with multilingual data. For this, we outline a construction strategy that aligns messages in different languages at both the node and semantic levels. Relationships between messages are established by merging entities that are the same but are referred to in different languages. Non-English message representations are converted into English semantic space via the cross-lingual word embeddings. The resulting message graph is then uniformly encoded by a GNN model. In special cases where a lesser-spoken language needs to be detected, a novel cross-lingual knowledge distillation framework, called CLKD, exploits prior knowledge learned from similar threads in English to make up for the paucity of annotated data. Experiments on both synthetic and real-world datasets show the framework to be highly effective at detection in both multilingual data and in languages where training samples are scarce.
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
In complex transfer learning scenarios new tasks might not be tightly linked to previous tasks. Approaches that transfer information contained only in the final parameters of a source model will therefore struggle. Instead, transfer learning at a higher level of abstraction is needed. We propose Leap, a framework that achieves this by transferring knowledge across learning processes. We associate each task with a manifold on which the training process travels from initialization to final parameters and construct a meta-learning objective that minimizes the expected length of this path. Our framework leverages only information obtained during training and can be computed on the fly at negligible cost. We demonstrate that our framework outperforms competing methods, both in meta-learning and transfer learning, on a set of computer vision tasks. Finally, we demonstrate that Leap can transfer knowledge across learning processes in demanding reinforcement learning environments (Atari) that involve millions of gradient steps.
We present Meta Learning for Knowledge Distillation (MetaDistil), a simple yet effective alternative to traditional knowledge distillation (KD) methods where the teacher model is fixed during training. We show the teacher network can learn to better transfer knowledge to the student network (i.e., learning to teach) with the feedback from the performance of the distilled student network in a meta learning framework. Moreover, we introduce a pilot update mechanism to improve the alignment between the inner-learner and meta-learner in meta learning algorithms that focus on an improved inner-learner. Experiments on various benchmarks show that MetaDistil can yield significant improvements compared with traditional KD algorithms and is less sensitive to the choice of different student capacity and hyperparameters, facilitating the use of KD on different tasks and models. The code is available at https://github.com/JetRunner/MetaDistil
The existing solutions for object detection distillation rely on the availability of both a teacher model and ground-truth labels. We propose a new perspective to relax this constraint. In our framework, a student is first trained with pseudo labels generated by the teacher, and then fine-tuned using labeled data, if any available. Extensive experiments demonstrate improvements over existing object detection distillation algorithms. In addition, decoupling the teacher and ground-truth distillation in this framework provides interesting properties such: as 1) using unlabeled data to further improve the students performance, 2) combining multiple teacher models of different architectures, even with different object categories, and 3) reducing the need for labeled data (with only 20% of COCO labels, this method achieves the same performance as the model trained on the entire set of labels). Furthermore, a by-product of this approach is the potential usage for domain adaptation. We verify these properties through extensive experiments.
Knowledge Distillation (KD) is a common method for transferring the ``knowledge learned by one machine learning model (the textit{teacher}) into another model (the textit{student}), where typically, the teacher has a greater capacity (e.g., more parameters or higher bit-widths). To our knowledge, existing methods overlook the fact that although the student absorbs extra knowledge from the teacher, both models share the same input data -- and this data is the only medium by which the teachers knowledge can be demonstrated. Due to the difference in model capacities, the student may not benefit fully from the same data points on which the teacher is trained. On the other hand, a human teacher may demonstrate a piece of knowledge with individualized examples adapted to a particular student, for instance, in terms of her cultural background and interests. Inspired by this behavior, we design data augmentation agents with distinct roles to facilitate knowledge distillation. Our data augmentation agents generate distinct training data for the teacher and student, respectively. We find empirically that specially tailored data points enable the teachers knowledge to be demonstrated more effectively to the student. We compare our approach with existing KD methods on training popular neural architectures and demonstrate that role-wise data augmentation improves the effectiveness of KD over strong prior approaches. The code for reproducing our results can be found at https://github.com/bigaidream-projects/role-kd