Do you want to publish a course? Click here

Molecule Generation Experience: An Open Platform of Material Design for Public Users

119   0   0.0 ( 0 )
 Added by Seiji Takeda Dr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Artificial Intelligence (AI)-driven material design has been attracting great attentions as a groundbreaking technology across a wide spectrum of industries. Molecular design is particularly important owing to its broad application domains and boundless creativity attributed to progresses in generative models. The recent maturity of molecular generative models has stimulated expectations for practical use among potential users, who are not necessarily familiar with coding or scripting, such as experimental engineers and students in chemical domains. However, most of the existing molecular generative models are Python libraries on GitHub, that are accessible for only IT-savvy users. To fill this gap, we newly developed a graphical user interface (GUI)-based web application of molecular generative models, Molecule Generation Experience, that is open to the general public. This is the first web application of molecular generative models enabling users to work with built-in datasets to carry out molecular design. In this paper, we describe the background technology extended from our previous work. Our new online evaluation and structural filtering algorithms significantly improved the generation speed by 30 to 1,000 times with a wider structural variety, satisfying chemical stability and synthetic reality. We also describe in detail our Kubernetes-based scalable cloud architecture and user-oriented GUI that are necessary components to achieve a public service. Finally, we present actual use cases in industrial research to design new photoacid generators (PAGs) as well as release cases in educational events.

rate research

Read More

The discovery of new materials has been the essential force which brings a discontinuous improvement to industrial products performance. However, the extra-vast combinatorial design space of material structures exceeds human experts capability to explore all, thereby hampering material development. In this paper, we present a material industry-oriented web platform of an AI-driven molecular inverse-design system, which automatically designs brand new molecular structures rapidly and diversely. Different from existing inverse-design solutions, in this system, the combination of substructure-based feature encoding and molecular graph generation algorithms allows a user to gain high-speed, interpretable, and customizable design process. Also, a hierarchical data structure and user-oriented UI provide a flexible and intuitive workflow. The system is deployed on IBMs and our clients cloud servers and has been used by 5 partner companies. To illustrate actual industrial use cases, we exhibit inverse-design of sugar and dye molecules, that were carried out by experimental chemists in those client companies. Compared to general human chemists standard performance, the molecular design speed was accelerated more than 10 times, and greatly increased variety was observed in the inverse-designed molecules without loss of chemical realism.
We present the sliding basis computational framework to automatically synthesize heterogeneous (graded or discrete) material fields for parts designed using constrained optimization. Our framework uses the fact that any spatially varying material field over a given domain may be parameterized as a weighted sum of the Laplacian eigenfunctions enabling efficient design space exploration with the weights as a small set of design variables. We further improve computational efficiency by using the property that the Laplacian eigenfunctions form a spectrum and may be ordered from lower to higher frequencies. This approach allows greater localized control of the material distribution as the sliding window moves through higher frequencies. The approach also reduces the number of optimization variables per iteration, thus the design optimization process speeds up independent of the domain resolution without sacrificing analysis quality. Our method is most beneficial when the gradients may not be computed easily (i.e., optimization problems coupled with external black-box analysis) thereby enabling optimization of otherwise intractable design problems. The sliding basis framework is independent of any particular physics analysis, objective and constraints, providing a versatile and powerful design optimization tool for various applications. We demonstrate our approach on graded solid rocket fuel design and multi-material topology optimization applications and evaluate its performance.
The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too.
Advances in imaging methods such as electron microscopy, tomography and other modalities are enabling high-resolution reconstructions of cellular and organelle geometries. Such advances pave the way for using these geometries for biophysical and mathematical modeling once these data can be represented as a geometric mesh, which, when carefully conditioned, enables the discretization and solution of partial differential equations. In this study, we outline the steps for a naive user to approach GAMer 2, a mesh generation code written in C++ designed to convert structural datasets to realistic geometric meshes, while preserving the underlying shapes. We present two example cases, 1) mesh generation at the subcellular scale as informed by electron tomography, and 2) meshing a protein with structure from x-ray crystallography. We further demonstrate that the meshes generated by GAMer are suitable for use with numerical methods. Together, this collection of libraries and tools simplifies the process of constructing realistic geometric meshes from structural biology data.
Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or extensibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا