Do you want to publish a course? Click here

The ferroelectric field-effect transistor with negative capacitance

548   0   0.0 ( 0 )
 Added by Igor A Luk'yanchuk
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime without hysteresis remains a daunting task. Here we show that the failure to implement the NC stems from the lack of understanding that its origin is fundamentally related with the inevitable emergence of the domain state. We put forth an ingenious design for the ferroelectric domain-based field-effect transistor with the stable reversible static negative capacitance. Using dielectric coating of the ferroelectric capacitor enables the tunability of the negative capacitance improving tremendously the performance of the field-effect transistors.



rate research

Read More

The pressing quest for overcoming Boltzmann tyranny in low-power nanoscale electronics revived the thoughts of engineers of early 1930-s on the possibility of negative circuit constants. The concept of the ferroelectric-based negative capacitance (NC) devices triggered explosive activity in the field. However, most of the research addressed transient NC, leaving the basic question of the existence of the steady-state NC unresolved. Here we demonstrate that the ferroelectric nanodot capacitor hosts a stable two-domain state realizing the static reversible NC device thus opening routes for the extensive use of the NC in domain wall-based nanoelectronics.
Negative capacitance (NC) in ferroelectrics, which stems from the imperfect screening of polarization, is considered a viable approach to lower voltage operation in the field-effect transistors (FETs) used in logic switches. In this paper, we discuss the implications of the transient nature of negative capacitance for its practical application. It is suggested that the NC effect needs to be characterized at the proper time scale to identify the type of circuits where functional NC-FETs can be used effectively.
The field-effect mobility of graphene devices is discussed. We argue that the graphene ballistic mean free path can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so we find a ballistic mean free path of 300nm at room-temperature for a carrier concentration of ~1e12/cm2 and that a substantial series resistance of around 300ohmum has to be taken into account. Furthermore, we demonstrate first quantum capacitance measurements on single-layer graphene devices.
It is well known that one needs an external source of energy to provide voltage amplification. Because of this, conventional circuit elements such as resistors, inductors or capacitors cannot provide amplification all by themselves. Here, we demonstrate that a ferroelectric can cause a differential amplification without needing such an external energy source. As the ferroelectric switches from one polarization state to the other, a transfer of energy takes place from the ferroelectric to the dielectric, determined by the ratio of their capacitances, which, in turn, leads to the differential amplification. {This amplification is very different in nature from conventional inductor-capacitor based circuits where an oscillatory amplification can be observed. The demonstration of differential voltage amplification from completely passive capacitor elements only, has fundamental ramifications for next generation electronics.
428 - V. Ryzhii , M. Ryzhii , A. Satou 2008
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well as energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, $V_{th,1}$ and $V_{th,2}$, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا