Do you want to publish a course? Click here

Angular momentum distributions for observed and modeled exoplanetary systems

135   0   0.0 ( 0 )
 Added by Jonathan Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The distribution of angular momentum of planets and their host stars provides important information on the formation and evolution of the planetary system. However, mysteries still remain, partly due to bias and uncertainty of the current observational datasets and partly due to the fact that theoretical models for the formation and evolution of planetary systems are still underdeveloped. In this study, we calculate the spin angular momenta of host stars and the orbital angular momenta of their planets using data from the NASA Exoplanet Archive, together with detailed analysis of observation dependent biases and uncertainty ranges. We also analyze the angular momenta of the planetary system as a function of star age to understand their variation in different evolutionary stages. In addition, we use a population of planets from theoretical model simulations to reexamine the observed patterns and compare the simulated population with the observed samples to assess variations and differences. We found the majority of exoplanets discovered thus far do not have the angular momentum distribution similar to the planets in our Solar System, though this could be due to the observation bias. When filtered by the observational biases, the model simulated angular momentum distributions are comparable to the observed pattern in general. However, the differences between the observation and model simulation in the parameter (angular momentum) space provide more rigorous constraints and insights on the issues that needed future improvement.



rate research

Read More

$bf{Context}$. We investigate the validity of the claim that invokes two extreme exoplanetary system candidates around the pulsating B-type subdwarfs KIC 10001893 and KIC 5807616 from the primary $it{Kepler}$ field. $bf{Aims}$. Our goal was to find characteristics and the source of weak signals that are observed in these subdwarf light curves. $bf{Methods}$. To achieve this, we analyzed short- and long-cadence $it{Kepler}$ data of the two stars by means of a Fourier transform and compared the results to Fourier transforms of simulated light curves to which we added exoplanetary signals. The long-cadence data of KIC 10001893 were extracted from CCD images of a nearby star, KIC 10001898, using a point spread function reduction technique. $bf{Results}$. It appears that the amplitudes of the Fourier transform signals that were found in the low-frequency region depend on the methods that are used to extract and prepare $it{Kepler}$ data. We demonstrate that using a comparison star for space telescope data can significantly reduce artifacts. Our simulations also show that a weak signal of constant amplitude and frequency, added to a stellar light curve, conserves its frequency in Fourier transform amplitude spectra to within 0.03 $mu$Hz. $bf{Conclusions}$. Based on our simulations, we conclude that the two low-frequency Fourier transform signals found in KIC 5807616 are likely the combined frequencies of the lower amplitude pulsating modes of the star. In the case of KIC 10001893, the signal amplitudes that are visible in the light curve depend on the data set and reduction methods. The strongest signal decreases significantly in amplitude when KIC 10001898 is used as a comparison star. Finally, we recommend that the signal detection threshold is increased to 5 $sigma$ (or higher) for a Fourier transform analysis of $it{Kepler}$ data in low-frequency regions.
177 - C. A. Watson 2010
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disk, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disk was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disk interaction out of alignment during the pre-main sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Aims: We present the first measurements of the solar-wind angular-momentum (AM) flux recorded by the Solar Orbiter spacecraft. Our aim is the validation of these measurements to support future studies of the Suns AM loss. Methods: We combine 60-minute averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser (SWA) and the magnetometer (MAG) onboard Solar Orbiter. We calculate the AM flux per solid-angle element using data from the first orbit of the missions cruise phase during 2020. We separate the contributions from protons and from magnetic stresses to the total AM flux. Results: The AM flux varies significantly over time. The particle contribution typically dominates over the magnetic-field contribution during our measurement interval. The total AM flux shows the largest variation and is typically anti-correlated with the radial solar-wind speed. We identify a compression region, potentially associated with a co-rotating interaction region or a coronal mass ejection, that leads to a significant localised increase in the AM flux, yet without a significant increase in the AM per unit mass. We repeat our analysis using the density estimate from the Radio and Plasma Waves (RPW) instrument. Using this independent method, we find a decrease in the peaks of positive AM flux but otherwise consistent results. Conclusions: Our results largely agree with previous measurements of the solar-wind AM flux in terms of amplitude, variability, and dependence on radial solar-wind bulk speed. Our analysis highlights the potential for future, more detailed, studies of the solar winds AM and its other large-scale properties with data from Solar Orbiter. We emphasise the need to study the radial evolution and latitudinal dependence of the AM flux in combination with data from Parker Solar Probe and assets at heliocentric distances of 1 au and beyond.
111 - G. Lesur , G. I. Ogilvie 2010
The mechanism of angular momentum transport in accretion discs has long been debated. Although the magnetorotational instability appears to be a promising process, poorly ionized regions of accretion discs may not undergo this instability. In this letter, we revisit the possibility of transporting angular momentum by turbulent thermal convection. Using high-resolution spectral methods, we show that strongly turbulent convection can drive outward angular momentum transport at a rate that is, under certain conditions, compatible with observations of discs. We find however that the angular momentum transport is always much weaker than the vertical heat transport. These results indicate that convection might be another way to explain global disc evolution, provided that a sufficiently unstable vertical temperature profile can be maintained.
112 - Joshua N. Winn 2014
The basic geometry of the Solar System -- the shapes, spacings, and orientations of the planetary orbits -- has long been a subject of fascination as well as inspiration for planet formation theories. For exoplanetary systems, those same properties have only recently come into focus. Here we review our current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual inclinations in multiplanet systems, the orientation of the host stars rotation axis, and the properties of planets in binary-star systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا