We prove that the Beta random walk has second order cubic fluctuations from the large deviation principle of the GUE Tracy-Widom type for arbitrary values $upalpha>0$ and $upbeta>0$ of the parameters of the Beta distribution, removing previous restrictions on their values. Furthermore, we prove that the GUE Tracy-Widom fluctuations still hold in the intermediate disorder regime. We also show that any random walk in space-time random environment that matches certain moments with the Beta random walk also has GUE Tracy-Widom fluctuations in the intermediate disorder regime. As a corollary we show the emergence of GUE Tracy-Widom fluctuations from the large deviation principle for trajectories ending at boundary points for random walks in space (time-independent) i.i.d. Dirichlet random environment in dimension $d=2$ for a class of asymptotic behavior of the parameters.
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete setting, a conjecture of van den Berg, Bolthausen and den Hollander [BBH04], who analyzed this question for the Wiener sausage in finite-time horizon. The proof builds on their result (which was resumed in the discrete setting by Phetpradap [Phet12]), and combines it with a series of tools that were developed in recent works of the authors [AS17, AS19a, AS20]. Moreover, we show that most of the intersection occurs in a single box where both walks realize an occupation density of order one.
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regime, when the speed is sublinear, we describe the precise probability of slowdown.
Let ${{bf mathcal{Z}}_n:ngeq 1}$ be a sequence of i.i.d. random probability measures. Independently, for each $ngeq 1$, let $(X_{n1},ldots, X_{nn})$ be a random vector of positive random variables that add up to one. This paper studies the large deviation principles for the randomly weighted sum $sum_{i=1}^{n} X_{ni} mathcal{Z}_i$. In the case of finite Dirichlet weighted sum of Dirac measures, we obtain an explicit form for the rate function. It provides a new measurement of divergence between probabilities. As applications, we obtain the large deviation principles for a class of randomly weighted means including the Dirichlet mean and the corresponding posterior mean. We also identify the minima of relative entropy with mean constraint in both forward and reverse directions.
This paper is concerned with the limit theory of the extreme order statistics derived from random walks. We establish the joint convergence of the order statistics near the minimum of a random walk in terms of the Feller chains. Detailed descriptions of the limit process are given in the case of simple symmetric walks and Gaussian walks. Some open problems are also presented.
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, we show that these random height functions converge to a Gaussian Free Field as predicted by Kenyon and Okounkov [28]. A key ingredient of our proof is a dynamical version of the discrete loop equations as introduced by Borodin, Guionnet and Gorin [5], which might be of independent interest.
Giancarlos Oviedo
,Gonzalo Panizo
,Alejandro F. Ramirez
.
(2021)
.
"Second order fluctuations of large deviations for perturbed random walks"
.
Alejandro Ram\\'irez
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا