Do you want to publish a course? Click here

Construction and application of provable positive and exact cubature formulas

118   0   0.0 ( 0 )
 Added by Jan Glaubitz
 Publication date 2021
and research's language is English
 Authors Jan Glaubitz




Ask ChatGPT about the research

Many applications require multi-dimensional numerical integration, often in the form of a cubature formula. These cubature formulas are desired to be positive and exact for certain finite-dimensional function spaces (and weight functions). Although there are several efficient procedures to construct positive and exact cubature formulas for many standard cases, it remains a challenge to do so in a more general setting. Here, we show how the method of least squares can be used to derive provable positive and exact formulas in a general multi-dimensional setting. Thereby, the procedure only makes use of basic linear algebra operations, such as solving a least squares problem. In particular, it is proved that the resulting least squares cubature formulas are ensured to be positive and exact if a sufficiently large number of equidistributed data points is used. We also discuss the application of provable positive and exact least squares cubature formulas to construct nested stable high-order rules and positive interpolatory formulas. Finally, our findings shed new light on some existing methods for multivariate numerical integration and under which restrictions these are ensured to be successful.



rate research

Read More

90 - Jan Glaubitz 2020
Positive interpolatory cubature formulas (CFs) are constructed for quite general integration domains and weight functions. These CFs are exact for general vector spaces of continuous real-valued functions that contain constants. At the same time, the number of data points -- all of which lie inside the domain of integration -- and cubature weights -- all positive -- is less or equal to the dimension of that vector space. The existence of such CFs has been ensured by Tchakaloff in 1957. Yet, to the best of the authors knowledge, this work is the first to provide a procedure to successfully construct them.
123 - Jan Glaubitz 2020
In many applications, it is impractical -- if not even impossible -- to obtain data to fit a known cubature formula (CF). Instead, experimental data is often acquired at equidistant or even scattered locations. In this work, stable (in the sense of nonnegative only cubature weights) high-order CFs are developed for this purpose. These are based on the approach to allow the number of data points N to be larger than the number of basis functions K which are integrated exactly by the CF. This yields an (N-K)-dimensional affine linear subspace from which cubature weights are selected that minimize certain norms corresponding to stability of the CF. In the process, two novel classes of stable high-order CFs are proposed and carefully investigated.
159 - Xin Xing , Hua Huang , Edmond Chow 2020
In an iterative approach for solving linear systems with ill-conditioned, symmetric positive definite (SPD) kernel matrices, both fast matrix-vector products and fast preconditioning operations are required. Fast (linear-scaling) matrix-vector products are available by expressing the kernel matrix in an $mathcal{H}^2$ representation or an equivalent fast multipole method representation. Preconditioning such matrices, however, requires a structured matrix approximation that is more regular than the $mathcal{H}^2$ representation, such as the hierarchically semiseparable (HSS) matrix representation, which provides fast solve operations. Previously, an algorithm was presented to construct an HSS approximation to an SPD kernel matrix that is guaranteed to be SPD. However, this algorithm has quadratic cost and was only designed for recursive binary partitionings of the points defining the kernel matrix. This paper presents a general algorithm for constructing an SPD HSS approximation. Importantly, the algorithm uses the $mathcal{H}^2$ representation of the SPD matrix to reduce its computational complexity from quadratic to quasilinear. Numerical experiments illustrate how this SPD HSS approximation performs as a preconditioner for solving linear systems arising from a range of kernel functions.
Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration of the SMG method, a stochastic multi-gradient direction is calculated by solving a quadratic subproblem, and it is shown that this direction is biased even when all individual gradient estimators are unbiased. We establish rates to compute a point in the Pareto front, of order similar to what is known for stochastic gradient in both convex and strongly convex cases. The analysis handles the bias in the multi-gradient and the unknown a priori weights of the limiting Pareto point. The SMG method is framed into a Pareto-front type algorithm for the computation of the entire Pareto front. The Pareto-front SMG algorithm is capable of robustly determining Pareto fronts for a number of synthetic test problems. One can apply it to any stochastic MOO problem arising from supervised machine learning, and we report results for logistic binary classification where multiple objectives correspond to distinct-sources data groups.
The problem of image reconstruction in thermoacoustic tomography requires inversion of a generalized Radon transform, which integrates the unknown function over circles in 2D or spheres in 3D. The paper investigates implementation of the recently discovered backprojection type inversion formulas for the case of spherical acquisition in 3D. A numerical simulation of the data acquisition with subsequent reconstructions are made for the Defrise phantom as well as for some other phantoms. Both full and partial scan situations are considered. The results are compared with the implementation of a previously used approximate inversion formula.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا