An Investigation of radiative proton-capture reactions in the Cd-In mass region


Abstract in English

The reaction network in the neutron-deficient part of the nuclear chart around $A sim 100$ contains several nuclei of importance to astrophysical processes, such as the p-process. This work reports on the results from recent experimental studies of the radiative proton-capture reactions $^{112,114}mathrm{Cd}(p,gamma)^{113,115}mathrm{In}$. Experimental cross sections for the reactions have been measured for proton beam energies residing inside the respective Gamow windows for each reaction, using isotopically enriched $^{112}mathrm{Cd}$ and $^{114}mathrm{Cd}$ targets. Two different techniques, the in-beam $gamma$-ray spectroscopy and the activation method have been employed, with the latter considered necessary to account for the presence of low-lying isomers in $^{113}mathrm{In}$ ($E_{gamma} approx 392$~keV, $t_{1/2} approx 100$~min), and $^{115}mathrm{In}$ ($E_{gamma} approx 336$~keV, $t_{1/2} approx 4.5$~h). Following the measurement of the total reaction cross sections, the astrophysical S factors have been additionally deduced. The experimental results are compared with Hauser-Feshbach theoretical calculations carried out with the most recent version of TALYS. The results are discussed in terms of their significance to the various parameters entering the models.

Download