Do you want to publish a course? Click here

An analysis of spikes in SDO/AIA data

287   0   0.0 ( 0 )
 Added by Peter Young
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) returns high-resolution images of the solar atmosphere in seven extreme ultraviolet wavelength channels. The images are processed on the ground to remove intensity spikes arising from energetic particles hitting the instrument, and the despiked images are provided to the community. In this work a three-hour series of images from the 171 A channel obtained on 2017 February 28 was studied to investigate how often the despiking algorithm gave false positives caused by compact brightenings in the solar atmosphere. The latter were identified through spikes appearing in the same detector pixel for three consecutive frames, and 1096 examples were found from the 900 image frames. These three-spikes were assigned to 126 dynamic solar features, and it is estimated that the three-spike method identifies 25% of the total number of features affected by despiking. For any 10 minute sequence of AIA 171 A images there are therefore around 28 solar features that have their intensity modified by despiking. The features are found in active regions, quiet Sun and coronal holes and, in relation to solar surface area, there is a greater proportion within coronal holes. In 96% of the cases, the despiked structure is a compact brightening of size 2 arcsec or less and the remaining 4% have narrow, elongated structures. In all cases, the events are not rendered invisible by the AIA processing pipeline, but the total intensity over the events lifetimes can be reduced by up to 67%. Scientists are recommended to always restore the original intensities to AIA data when studying short-lived or rapidly-evolving features that exhibit fine-scale structure.



rate research

Read More

The radioheliograph image is essential for the study of solar short term activities and long term variations, while the continuity and granularity of radioheliograph data is not so ideal, due to the short visible time of the sun and the complex electron-magnetic environment near the ground-based radio telescope. In this work, we develop a multi-channel input single-channel output neural network, which can generate radioheliograph image in microwave band from the Extreme Ultra-violet (EUV) observation of the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamic Observatory (SDO). The neural network is trained with nearly 8 years of data of Nobeyama Radioheliograph (NoRH) at 17 GHz and SDO/AIA from January 2011 to September 2018. The generated radioheliograph image is in good consistency with the well-calibrated NoRH observation. SDO/AIA provides solar atmosphere images in multiple EUV wavelengths every 12 seconds from space, so the present model can fill the vacancy of limited observation time of microwave radioheliograph, and support further study of the relationship between the microwave and EUV emission.
94 - S. P. Rajaguru 2012
We study properties of waves of frequencies above the photospheric acoustic cut-off of $approx$5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {AA} and 1700 {AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called acoustic halos seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode
We report an observation of a partially erupting prominence and associated dynamical plasma processes based on observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The prominence first goes through a slow rise (SR) phase followed by a fast rise (FR). The slow rise phase started after a couple of small brightenings seen toward the footpoints. At the turning point from SR to FR, the prominence had already become kinked. The prominence shows strong brightening at the central kink location during the start of FR. We interpret this as internal magnetic reconnection occurring at a vertical current sheet forming between the two legs of the erupting prominence (flux-rope). The brightening at the central kink location is seen in all the EUV channels of AIA. The contributions of differential emission at higher temperatures are larger compared to that for typical coronal temperatures supporting a reconnection scenario at the central kink location. The plasma above the brightening location gets ejected as a hot plasmoid-like structure embedded in a CME, and those below drain down in the form of blobs moving towards the Suns surface. The unique time resolution of the AIA has allowed all of these eruptive aspects, including SR-to-FR, kinking, central current sheet formation, plasmoid-like eruption, and filament splitting, to be observed in a single event, providing strong and comprehensive evidence in favour of the model of partially erupting flux ropes.
In this paper, we carry out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of the jet2 is 402 km s. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of solar gravitational acceleration at the solar surface, while the latter is lower than solar gravitational acceleration. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced byextra forces.
118 - T. Rotter 2015
We present an empirical model based on the visible area covered by coronal holes close to the central meridian in order to predict the solar wind speed at 1 AU with a lead time up to four days in advance with a 1hr time resolution. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous 3 Carrington Rotations. Thus the algorithm automatically reacts on the changes of the solar wind speed during different phases of the solar cycle. The adaptive algorithm has been applied to and tested on SDO/AIA-193A observations and ACE measurements during the years 2011-2013, covering 41 Carrington Rotations. The solar wind speed arrival time is delayed and needs on average 4.02 +/- 0.5 days to reach Earth. The algorithm produces good predictions for the 156 solar wind high speed streams peak amplitudes with correlation coefficients of cc~0.60. For 80% of the peaks, the predicted arrival matches within a time window of 0.5 days of the ACE in situ measurements. The same algorithm, using linear predictions, was also applied to predict the magnetic field strength from coronal hole areas but did not give reliable predictions (cc~0.2).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا