Do you want to publish a course? Click here

Stochastic Analysis of the Diffusion Least Mean Square and Normalized Least Mean Square Algorithms for Cyclostationary White Gaussian and Non-Gaussian Inputs

77   0   0.0 ( 0 )
 Added by Jose Bermudez
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The diffusion least mean square (DLMS) and the diffusion normalized least mean square (DNLMS) algorithms are analyzed for a network having a fusion center. This structure reduces the dimensionality of the resulting stochastic models while preserving important diffusion properties. The analysis is done in a system identification framework for cyclostationary white nodal inputs. The system parameters vary according to a random walk model. The cyclostationarity is modeled by periodic time variations of the nodal input powers. The analysis holds for all types of nodal input distributions and nodal input power variations. The derived models consist of simple scalar recursions. These recursions facilitate the understanding of the network mean and mean-square dependence upon the 1) nodal weighting coefficients, 2) nodal input kurtosis and cyclostationarities, 3) nodal noise powers and 4) the unknown system mean-square parameter increments. Optimization of the node weighting coefficients is studied. Also investigated is the stability dependence of the two algorithms upon the nodal input kurtosis and weighting coefficients. Significant differences are found between the behaviors of the DLMS and DNLMS algorithms for non-Gaussian nodal inputs. Simulations provide strong support for the theory.



rate research

Read More

260 - Wei Xu , Wen Chen , Yingjie Liang 2017
This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Levy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Levy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Levy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.
We consider the least-squares regression problem and provide a detailed asymptotic analysis of the performance of averaged constant-step-size stochastic gradient descent (a.k.a. least-mean-squares). In the strongly-convex case, we provide an asymptotic expansion up to explicit exponentially decaying terms. Our analysis leads to new insights into stochastic approximation algorithms: (a) it gives a tighter bound on the allowed step-size; (b) the generalization error may be divided into a variance term which is decaying as O(1/n), independently of the step-size $gamma$, and a bias term that decays as O(1/$gamma$ 2 n 2); (c) when allowing non-uniform sampling, the choice of a good sampling density depends on whether the variance or bias terms dominate. In particular, when the variance term dominates, optimal sampling densities do not lead to much gain, while when the bias term dominates, we can choose larger step-sizes that leads to significant improvements.
This paper studies the distributed average tracking problem pertaining to a discrete-time linear time-invariant multi-agent network, which is subject to, concurrently, input delays, random packet-drops, and reference noise. The problem amounts to an integrated design of delay and packet-drop tolerant algorithm and determining the ultimate upper bound of the tracking error between agents states and the average of the reference signals. The investigation is driven by the goal of devising a practically more attainable average tracking algorithm, thereby extending the existing work in the literature which largely ignored the aforementioned uncertainties. For this purpose, a blend of techniques from Kalman filtering, multi-stage consensus filtering, and predictive control is employed, which gives rise to a simple yet comepelling distributed average tracking algorithm that is robust to initialization error and allows the trade-off between communication/computation cost and stationary-state tracking error. Due to the inherent coupling among different control components, convergence analysis is significantly challenging. Nevertheless, it is revealed that the allowable values of the algorithm parameters rely upon the maximal degree of an expected network, while the convergence speed depends upon the second smallest eigenvalue of the same networks topology. The effectiveness of the theoretical results is verified by a numerical example.
82 - Hailong Zhu , Li Chen , Xiuli He 2019
In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between an SDE and an ordinary differential equation (ODE) is that the first one needs an additional assumption, nonuniform Lyapunov matrix, to guarantee that the linear SDE can be transformed into a decoupled one, while the second does not. Therefore, the first main novelty of our work is that we establish some preliminary results to tackle the stochasticity. This paper is also concerned with the mean-square exponential stability of nonlinear perturbation of a linear SDE under the condition of nonuniform mean-square exponential contraction (NMS-EC). For this purpose, the concept of second-moment regularity coefficient is introduced. This concept is essential in determining the stability of the perturbed equation, and hence we deduce the lower and upper bounds of this coefficient. Our results imply that the lower and upper bounds of the second-moment regularity coefficient can be expressed solely by the drift term of the linear SDE.
This work mainly investigates the mean-square stability and stabilizability for a single-input single-output networked linear feedback system. The control signal in the networked system is transmitted over an unreliable channel. In this unreliable channel, the data transmission times, referred to as channel induced delays, are random values and the transmitted data could also be dropout with certain probability. The channel induced delays and packet dropout are modeled by an independent and identically distributed stochastic process with a fixed probability mass function. At the channel terminal, a linear combination of data received at one sampling time is applied to the plant of the networked feedback system as a new control signal. To describe the uncertainty in the channel, a concept so called frequency response of variation is introduced for the unreliable channel. With the given linear receiving strategy, a mean-square stability criterion is established in terms of the frequency response of variation of the unreliable channel for the networked feedback system. It is shown by this criterion that the mean-square stability is determined by the interaction between the frequency response of variation and the nominal feedback system. The role played by the random channel induced delays is the same as that played by a colored additive noise in an additive noise channel with a signal-to-noise ratio constraint. Moreover, the mean-square input-output stabilizability via output feedback is studied for the networked system. When the plant in the networked feedback system is minimum phase, an analytic necessary and sufficient condition is presented for its mean-square input-output stabilizability. It turns out that the stabilizability is only determined by the interaction between the frequency response of variation of the channel and unstable poles of the plant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا