A rigorous and efficient approach to finding and quantifying symmetries in complex networks


Abstract in English

Symmetries are fundamental to dynamical processes in complex networks such as cluster synchronization, which have attracted a great deal of current research. Finding symmetric nodes in large complex networks, however, has relied on automorphism groups in algebraic group theory, which are solvable in quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each and every node in the network. We prove mathematically that nodes with the identical SPV are symmetrical to each other. Utilizing six representative complex networks from the real world, we demonstrate that all symmetric nodes can be found in linear time, and the SPVs can not only characterize the similarity of nodes but also quantify the nodal influences in spreading dynamics on the network. Our SPV-based framework, in additional to being rigorously justified, provides a physically intuitive way to uncover, understand and exploit symmetric structures in complex networks.

Download