Global existence and scattering for the inhomogeneous nonlinear Schrodinger equation


Abstract in English

In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N-2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.

Download