No Arabic abstract
We report a single-lens/single-source microlensing event designated as OGLE-2019-BLG-1058. For this event, the short timescale ($sim 2.5$ days) and very fast lens-source relative proper motion ($mu_{rm rel} sim 17.6, {rm mas, yr^{-1}}$) suggest that this isolated lens is a free-floating planet (FFP) candidate located in the disk of our Galaxy. Because this is a high-magnification event that could have a nearby lens, we have the opportunity to measure the terrestrial microlens parallax (TPRX). We find a TPRX signal consistent with a disk FFP, but at low significance. A direct measurement of the source proper motion ($mathbf{mu}_{rm S}$) shows that the large $mu_{rm rel}$ is due to an extreme $mathbf{mu}_{rm S}$, and thus, the lens is consistent with being a very low-mass star in the bulge and the TPRX measurement is likely spurious. We show how a precise measurement of $mathbf{mu}_{rm S}$ with the mean properties of the bulge proper motion distribution would have given the opposite result, i.e., provided supporting evidence for an FFP in the disk and the TPRX measurement. Because the conditions for producing TPRX (i.e., a nearby disk lens) will also tend to produce a large $mu_{rm rel}$, this case demonstrates how $mathbf{mu}_{rm S}$ measurements in general provide a strong test of TPRX signals, which Gould et al. (2013) showed were an important probe of FFP candidates.
We present limits on the lens flux of OGLE-2007-BLG-224 based on MagAO imaging taken seven years after the microlensing event. At the time of the observations, the lens should have been separated from the microlensing source by 292 mas. However, no new sources are detected with MagAO. We place an upper limit on the lens flux of $H>20.57$. This measurement supports the conclusion of Gould et al. (2009) that the lens in this event should be a brown dwarf. This is the first test of a prediction based on the terrestrial microlens parallax effect and the first AO confirmation of a sub-stellar/dark microlens.
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the measurement of the annual parallax effect combined with the finite source effect allows us to determine the mass of the host star (M_L = 0.3--0.6 M_Sun), the mass of its planet (m_p = 1.4--3.1 M_Earth), the projected separation between the host and planet (a_perp = 1.2--2.3 au), and the distance to the lens system (D_L = 0.6--1.2 kpc). The lens is plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below the break in the mass-ratio function (Suzuki et al. 2016; Jung et al. 2019), it demonstrates that current experiments are powerful enough to robustly measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small planets is maximized for planets with separations just outside of the boundary for resonant caustics and that sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a factor A > 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between (s > 1) and (s < 1) solutions are not in the regime (|log s| >> 0) for which the close/wide degeneracy was derived. This investigation suggests a link between the close/wide and inner/outer degeneracies and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.
We report the discovery of a planet in the microlensing event OGLE-2018-BLG-1269, with planet-host mass ratio $q sim 6times10^{-4}$, i.e., $0.6$ times smaller than the Jupiter/Sun mass ratio. Combined with the $Gaia$ parallax and proper motion, a strong one-dimensional constraint on the microlens parallax vector allows us to significantly reduce the uncertainties of lens physical parameters. A Bayesian analysis that ignores any information about light from the host yields that the planet is a cold giant $(M_{2} = 0.69_{-0.22}^{+0.44},M_{rm J})$ orbiting a Sun-like star $(M_{1} = 1.13_{-0.35}^{+0.72},M_{odot})$ at a distance of $D_{rm L} = 2.56_{-0.62}^{+0.92},{rm kpc}$. The projected planet-host separation is $a_{perp} = 4.61_{-1.17}^{+1.70},{rm au}$. Using {it Gaia} astrometry, we show that the blended light lies $lesssim 12,$mas from the host and therefore must be either the host star or a stellar companion to the host. An isochrone analysis favors the former possibility at $>99.6%$. The host is therefore a subgiant. For host metallicities in the range of $0.0 leq {rm [Fe/H]} leq +0.3$, the host and planet masses are then in the range of $1.16 leq M_{1}/M_{odot} leq 1.38$ and $0.74 leq M_{2}/M_{rm J} leq 0.89$, respectively. Low host metallicities are excluded. The brightness and proximity of the lens make the event a strong candidate for spectroscopic followup both to test the microlensing solution and to further characterize the system.
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find that the multiple-peak feature provides a very tight constraint on the microlens-parallax effect, enabling us to precisely measure the microlens parallax $pi_{rm E}$. All the peaks are densely and continuously covered from high-cadence survey observations using globally located telescopes and the analysis of the peaks leads to the precise measurement of the angular Einstein radius $theta_{rm E}$. From the combination of the measured $pi_{rm E}$ and $theta_{rm E}$, we determine the physical parameters of the lens. It is found that the lens is a binary composed of two M dwarfs with masses $M_1=0.18pm 0.01 M_odot$ and $M_2=0.16pm 0.01 M_odot$ located at a distance $D_{rm L}= 1.35pm 0.09 {rm kpc}$. According to the estimated lens mass and distance, the flux from the lens comprises an important fraction, $sim 25%$, of the blended flux. The bright nature of the lens combined with the high relative lens-source motion, $mu=6.94pm 0.50 {rm mas} {rm yr}^{-1}$, suggests that the lens can be directly observed from future high-resolution follow-up observations.
We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.