No Arabic abstract
We study third-harmonic generation (THG) in an excitonic insulator (EI) described in a two-band correlated electron model. Employing the perturbative expansion with respect to the external electric field, we derive the THG susceptibility taking into account the collective dynamics of the excitonic order parameter. In the inversion-symmetric EI, the collective order parameter motion is activated at second order of the external field and its effects arise in THG. We find three peaks in the THG susceptibility at energies $hbar Omega = Delta_g/3$, $Delta_g/2$, and $Delta_g$, where $Delta_g$ is the bandgap. While the THG response at $Delta_g/3$ is caused by three-photon excitation of the independent particle across the bandgap, the latter two peaks involve the effects of the collective motion activated at second order. The resulting resonant peaks are prominent in particular in the BCS regime but they become less significant in the BEC regime. We demonstrate that the resonant peaks originated by the collective excitations are observable in the temperature profile of the THG intensity. Our study suggests that the THG measurement should be promising for detecting the excitonic collective nature of materials.
Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under AC driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cutoff energies $epsilon_{rm cut} = U + mE_0$ scale with the Coulomb interaction $U$ and the maximum field strength $E_0$. In this regime, the created doublons and holons are localized because of the strong field and the $m$-th plateau originates from the recombination of $m$-th nearest-neighbor doublon-holon pairs. In the weak-field regime, there is only a single plateau in the intensity, which originates from the recombination of itinerant doublons and holons. Here, $epsilon_{rm cut} = Delta_{rm gap} + alpha E_0$, with $Delta_{rm gap}$ the band gap and $alpha>1$. We demonstrate that the Mott insulator shows a stronger high-harmonic intensity than a semiconductor model with the same dispersion as the Mott insulator, even if the semiconductor bands are broadened by impurity scattering to mimic the incoherent scattering in the Mott insulator.
With a combination of numerical methods, including quantum Monte Carlo, exact diagonalization, and a simplified dynamical mean-field model, we consider the attosecond charge dynamics of electrons induced by strong-field laser pulses in two-dimensional Mott insulators. The necessity to go beyond single-particle approaches in these strongly correlated systems has made the simulation of two-dimensional extended materials challenging, and we contrast their resulting high-harmonic emission with more widely studied one-dimensional analogues. As well as considering the photo-induced breakdown of the Mott insulating state and magnetic order, we also resolve the time and ultra-high frequency domains of emission, which are used to characterize both the photo-transition, and the sub-cycle structure of the electron dynamics. This extends simulation capabilities and understanding of the photo-melting of these Mott insulators in two-dimensions, at the frontier of attosecond non-equilibrium science of correlated materials.
We study the high harmonic generation (HHG) in Mott insulators using Floquet dynamical mean-field theory (DMFT). We show that the main origin of the HHG in Mott insulators is the doublon-holon recombination, and that the character of the HHG spectrum differs depending on the field strength. In the weaker-field regime, the HHG spectrum shows a single plateau as in the HHG from gases, and its cut-off energy $epsilon_{rm cut}$ scales linearly with the field strength $E_0$ as $epsilon_{rm cut}=Delta_{rm gap} + alpha E_0$, where $Delta_{rm gap}$ is the Mott gap. On the other hand, in the stronger-field regime, multiple plateaus emerge and the $m$-th cut-off scales as $epsilon_{rm cut,m}=U + m E_0$. We show that this difference originates from the different dynamics of the doublons and holons in the weak- and strong-field regimes. We also comment on the similarities and differences between HHG from Mott insulators and from semiconductors. This proceedings paper complements our recent work, Phys. Rev. Lett. 121, 057405 (2018), with additional results and analyses.
Bardasis-Schrieffer modes in superconductors are fluctuations in subdominant pairing channels, e.g., d-wave fluctuations in an s-wave superconductor. This Rapid Communication shows that these modes also generically occur in excitonic insulators. In s-wave excitonic insulators, a p-wave Bardasis-Schrieffer mode exists below the gap energy, is optically active and hybridizes strongly with photons to form Bardasis-Schrieffer polaritons, which are observable in both far-field and near-field optical experiments.
We show that in excitonic insulators with $s$-wave electron-hole pairing, an applied electric field (either pulsed or static) can induce a $p$-wave component to the order parameter, and further drive it to rotate in the $s+ip$ plane, realizing a Thouless charge pump. In one dimension, each cycle of rotation pumps exactly two electrons across the sample. Higher dimensional systems can be viewed as a stack of one dimensional chains in momentum space in which each chain crossing the fermi surface contributes a channel of charge pumping. Physics beyond the adiabatic limit, including in particular dissipative effects is discussed.