No Arabic abstract
In this paper, we consider linear ill-posed problems in Hilbert spaces and their regularization via frame decompositions, which are generalizations of the singular-value decomposition. In particular, we prove convergence for a general class of continuous regularization methods and derive convergence rates under both a-priori and a-posteriori parameter choice rules. Furthermore, we apply our derived results to a standard tomography problem based on the Radon transform.
We consider the decomposition of bounded linear operators on Hilbert spaces in terms of functions forming frames. Similar to the singular-value decomposition, the resulting frame decompositions encode information on the structure and ill-posedness of the problem and can be used as the basis for the design and implementation of efficient numerical solution methods. In contrast to the singular-value decomposition, the presented frame decompositions can be derived explicitly for a wide class of operators, in particular for those satisfying a certain stability condition. In order to show the usefulness of this approach, we consider different examples from the field of tomography.
We consider the problem of atmospheric tomography, as it appears for example in adaptive optics systems for extremely large telescopes. We derive a frame decomposition, i.e., a decomposition in terms of a frame, of the underlying atmospheric tomography operator, extending the singular-value-type decomposition results of Neubauer and Ramlau (2017) by allowing a mixture of both natural and laser guide stars, as well as arbitrary aperture shapes. Based on both analytical considerations as well as numerical illustrations, we provide insight into the properties of the derived frame decomposition and its building blocks.
The characteristic feature of inverse problems is their instability with respect to data perturbations. In order to stabilize the inversion process, regularization methods have to be developed and applied. In this work we introduce and analyze the concept of filtered diagonal frame decomposition which extends the standard filtered singular value decomposition to the frame case. Frames as generalized singular system allows to better adapt to a given class of potential solutions. In this paper, we show that filtered diagonal frame decomposition yield a convergent regularization method. Moreover, we derive convergence rates under source type conditions and prove order optimality under the assumption that the considered frame is a Riesz-basis.
We analyze sparse frame based regularization of inverse problems by means of a diagonal frame decomposition (DFD) for the forward operator, which generalizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse $ell^1$-regularization which are usually implemented thorough iterative schemes. If the frame is a basis (non-redundant case), the thr
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of such decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.