No Arabic abstract
Non-Hermitian topological systems exhibit a plethora of unusual topological phenomena that are absent in the Hermitian systems. One of these key features is the extreme eigenstate localization of eigenstates, also known as non-Hermitian skin effect (NHSE), which occurs in open chains. However, many new and peculiar non-Hermitian characteristics of the eigenstates and eigenvlaues that emerge when two such non-Hermitian chains are coupled together remain largely unexplored. Here, we report various new avenues of eigenstate localization in coupled non-Hermitian chains with dissimilar inverse skin lengths in which the NHSE can be switched on and off by the inter-chain coupling amplitude. A very small inter-chain strength causes the NHSE to be present at both ends of an anti-symmetric coupled system because of the weak hybridization of the eigenstates of the individual chains. The eigenspectrum under open boundary conditions (OBC) exhibits a discontinuous jump known as the critical NHSE (CNHSE) as its size increases. However, when the hybridization between eigenstates becomes significant in a system with strong inter-chain coupling, the NHSE and CNHSE vanish. Moreover, a peculiar half-half skin localization occurs in composite chains with opposite signs of inverse decay lengths, where half of the eigenstates are exponentially localized at one chain and the remainder of the eigenstates on the other chain. Our results provide a new twist and insights for non-Hermitian phenomena in coupled non-Hermitian systems.
In conventional Hermitian systems with the open boundary condition, Blochs theorem is perturbatively broken down, which means although the crystal momentum is not a good quantum number, the eigenstates are the superposition of several extended Bloch waves. In this paper, we show that Blochs theorem can be non-perturbatively broken down in some Hermitian Bosonic systems. The quasiparticles of the system are the superposition of localized non-Bloch waves, which are characterized by the complex momentum whose imaginary part determines the localization properties. Our work is a Hermitian generalization of the non-Hermitian skin effect, although they share the same mechanism.
Non-Hermitian skin effect and critical skin effect are unique features of non-Hermitian systems. In this Letter, we study an open system with its dynamics of single-particle correlation function effectively dominated by a non-Hermitian damping matrix, which exhibits $mathbb{Z}_2$ skin effect, and uncover the existence of a novel phenomenon of helical damping. When adding perturbations that break anomalous time reversal symmetry to the system, the critical skin effect occurs, which causes the disappearance of the helical damping in the thermodynamic limit although it can exist in small size systems. We also demonstrate the existence of anomalous critical skin effect when we couple two identical systems with $mathbb{Z}_2$ skin effect. With the help of non-Bloch band theory, we unveil that the change of generalized Brillouin zone equation is the necessary condition of critical skin effect.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
In this paper, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on the other hand, if the Hermitian Hamiltonian has spinful time-reversal symmetry, skin modes can be induced by on-site dissipations under certain circumstance. As a concrete example, we employ the Rice-Mele model to illustrate our results. Furthermore, we predict that the skin modes can be detected by the chiral tunneling effect, that is, the tunneling favors the direction where the skin modes are localized. Our work reveals a no-go theorem for the emergence of skin modes, and paves the way for searching for quantum systems with skin modes and studying their novel physical responses.
We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin effect, where an extensive number of Hamiltonian eigenstates localize at only one of the two dislocations. An example of such a phase are two-dimensional systems exhibiting weak non-Hermitian topology, which are adiabatically related to a decoupled stack of one-dimensional Hatano-Nelson chains. Moreover, we show that strong two-dimensional point gap topology may also result in a dislocation response, even when there is no skin effect present with open boundary conditions. For both cases, we directly relate their bulk topology to a stable dislocation skin effect. Finally, and in stark contrast to the Hermitian case, we find that gapless non-Hermitian systems hosting bulk exceptional points also give rise to a well-localized dislocation response.