Do you want to publish a course? Click here

Unifying Nonlocal Blocks for Neural Networks

91   0   0.0 ( 0 )
 Added by Lei Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The nonlocal-based blocks are designed for capturing long-range spatial-temporal dependencies in computer vision tasks. Although having shown excellent performance, they still lack the mechanism to encode the rich, structured information among elements in an image or video. In this paper, to theoretically analyze the property of these nonlocal-based blocks, we provide a new perspective to interpret them, where we view them as a set of graph filters generated on a fully-connected graph. Specifically, when choosing the Chebyshev graph filter, a unified formulation can be derived for explaining and analyzing the existing nonlocal-based blocks (e.g., nonlocal block, nonlocal stage, double attention block). Furthermore, by concerning the property of spectral, we propose an efficient and robust spectral nonlocal block, which can be more robust and flexible to catch long-range dependencies when inserted into deep neural networks than the existing nonlocal blocks. Experimental results demonstrate the clear-cut improvements and practical applicabilities of our method on image classification, action recognition, semantic segmentation, and person re-identification tasks.



rate research

Read More

71 - Lei Zhu , Qi She , Lidan Zhang 2019
The nonlocal-based blocks are designed for capturing long-range spatial-temporal dependencies in computer vision tasks. Although having shown excellent performances, they lack the mechanism to encode the rich, structured information among elements in an image. In this paper, to theoretically analyze the property of these nonlocal-based blocks, we provide a unified approach to interpreting them, where we view them as a graph filter generated on a fully-connected graph. When the graph filter is approximated by Chebyshev polynomials, a generalized formulation can be derived for explaining the existing nonlocal-based blocks ($mathit{e.g.,}$ nonlocal block, nonlocal stage, double attention block). Furthermore, we propose an efficient and robust spectral nonlocal block, which can be flexibly inserted into deep neural networks to catch the long-range dependencies between spatial pixels or temporal frames. Experimental results demonstrate the clear-cut improvements and practical applicabilities of the spectral nonlocal block on image classification (Cifar-10/100, ImageNet), fine-grained image classification (CUB-200), action recognition (UCF-101), and person re-identification (ILID-SVID, Mars, Prid-2011) tasks.
Compact convolutional neural networks (CNNs) have witnessed exceptional improvements in performance in recent years. However, they still fail to provide the same predictive power as CNNs with a large number of parameters. The diverse and even abundant features captured by the layers is an important characteristic of these successful CNNs. However, differences in this characteristic between large CNNs and their compact counterparts have rarely been investigated. In compact CNNs, due to the limited number of parameters, abundant features are unlikely to be obtained, and feature diversity becomes an essential characteristic. Diverse features present in the activation maps derived from a data point during model inference may indicate the presence of a set of unique descriptors necessary to distinguish between objects of different classes. In contrast, data points with low feature diversity may not provide a sufficient amount of unique descriptors to make a valid prediction; we refer to them as random predictions. Random predictions can negatively impact the optimization process and harm the final performance. This paper proposes addressing the problem raised by random predictions by reshaping the standard cross-entropy to make it biased toward data points with a limited number of unique descriptive features. Our novel Bias Loss focuses the training on a set of valuable data points and prevents the vast number of samples with poor learning features from misleading the optimization process. Furthermore, to show the importance of diversity, we present a family of SkipNet models whose architectures are brought to boost the number of unique descriptors in the last layers. Our Skipnet-M can achieve 1% higher classification accuracy than MobileNetV3 Large.
Deep neural networks often suffer from poor performance or even training failure due to the ill-conditioned problem, the vanishing/exploding gradient problem, and the saddle point problem. In this paper, a novel method by acting the gradient activation function (GAF) on the gradient is proposed to handle these challenges. Intuitively, the GAF enlarges the tiny gradients and restricts the large gradient. Theoretically, this paper gives conditions that the GAF needs to meet, and on this basis, proves that the GAF alleviates the problems mentioned above. In addition, this paper proves that the convergence rate of SGD with the GAF is faster than that without the GAF under some assumptions. Furthermore, experiments on CIFAR, ImageNet, and PASCAL visual object classes confirm the GAFs effectiveness. The experimental results also demonstrate that the proposed method is able to be adopted in various deep neural networks to improve their performance. The source code is publicly available at https://github.com/LongJin-lab/Activated-Gradients-for-Deep-Neural-Networks.
The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popular network pruning is an effective method to reduce the redundancy of the models. However, the ranking of filters according to their importance on different pruning criteria may be inconsistent. One filter could be important according to a certain criterion, while it is unnecessary according to another one, which indicates that each criterion is only a partial view of the comprehensive importance. From this motivation, we propose a novel framework to integrate the existing filter pruning criteria by exploring the criteria diversity. The proposed framework contains two stages: Criteria Clustering and Filters Importance Calibration. First, we condense the pruning criteria via layerwise clustering based on the rank of importance score. Second, within each cluster, we propose a calibration factor to adjust their significance for each selected blending candidates and search for the optimal blending criterion via Evolutionary Algorithm. Quantitative results on the CIFAR-100 and ImageNet benchmarks show that our framework outperforms the state-of-the-art baselines, regrading to the compact model performance after pruning.
Convolutional neural networks (CNNs) often have poor generalization performance under domain shift. One way to improve domain generalization is to collect diverse source data from multiple relevant domains so that a CNN model is allowed to learn more domain-invariant, and hence generalizable representations. In this work, we address domain generalization with MixStyle, a plug-and-play, parameter-free module that is simply inserted to shallow CNN layers and requires no modification to training objectives. Specifically, MixStyle probabilistically mixes feature statistics between instances. This idea is inspired by the observation that visual domains can often be characterized by image styles which are in turn encapsulated within instance-level feature statistics in shallow CNN layers. Therefore, inserting MixStyle modules in effect synthesizes novel domains albeit in an implicit way. MixStyle is not only simple and flexible, but also versatile -- it can be used for problems whereby unlabeled images are available, such as semi-supervised domain generalization and unsupervised domain adaptation, with a simple extension to mix feature statistics between labeled and pseudo-labeled instances. We demonstrate through extensive experiments that MixStyle can significantly boost the out-of-distribution generalization performance across a wide range of tasks including object recognition, instance retrieval, and reinforcement learning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا