A hypergraph can be obtained from a simplicial complex by deleting some non-maximal simplices. In this paper, we study the embedded homology as well as the homology of the (lower-)associated simplicial complexes for hypergraphs. We generalize the discrete Morse functions on simplicial complexes. We study the discrete Morse functions on hypergraphs as well as the discrete Morse functions on the (lower-)associated simplicial complexes of the hypergraphs.
In this paper, we prove that discrete Morse functions on digraphs are flat Witten-Morse functions and Witten complexes of transitive digraphs approach to Morse complexes. We construct a chain complex consisting of the formal linear combinations of paths which are not only critical paths of the transitive closure but also allowed elementary paths of the digraph, and prove that the homology of the new chain complex is isomorphic to the path homology. On the basis of the above results, we give the Morse inequalities on digraphs.
This paper is on further development of discrete complex analysis introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal. We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S. Smirnov from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L. Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G. Ciarlet-P.-A. Raviart for rhombic lattices. In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A. Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory.
In this paper, we prove that for any $kge 3$, there exist infinitely many minimal asymmetric $k$-uniform hypergraphs. This is in a striking contrast to $k=2$, where it has been proved recently that there are exactly $18$ minimal asymmetric graphs. We also determine, for every $kge 1$, the minimum size of an asymmetric $k$-uniform hypergraph.
We study hypergraphs which are uniquely determined by their chromatic, independence and matching polynomials. B. Bollobas, L. Pebody and O. Riordan (2000) conjectured (BPR-conjecture) that almost all graphs are uniquely determined by their chromatic polynomials. We show that for $r$-uniform hypergraphs with $r geq 3$ this is almost never the case. This disproves the analolgue of the BPR-conjecture for $3$-uniform hypergraphs. For $r =2$ this also holds for the independence polynomial, as shown by J.A. Makowsky and V. Rakita (2017), whereas for the chromatic and matching polynomial this remains open.
Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from an n-dimensional Poisson point process, we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and non-singular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we get the expected numbers of simplices in the Poisson-Delaunay mosaic in dimensions up to 4.