Do you want to publish a course? Click here

Constraining the Orbit and Mass of $epsilon$ Eridani b with Radial Velocities, Hipparcos IAD-{Gaia~DR2} Astrometry, and Multi-epoch Vortex Coronagraphy Upper Limits

159   0   0.0 ( 0 )
 Added by Jorge Llop-Sayson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

$epsilon$~Eridani is a young planetary system hosting a complex multi-belt debris disk and a confirmed Jupiter-like planet orbiting at 3.48 AU from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recent study of Mawet et al. 2019, which combined radial velocity (RV) data and Ms-band direct imaging upper limits, started to constrain the planets orbital parameters and mass, but are still affected by large error bars and degeneracies. Here we make use of the most recent data compilation from three different techniques to further refine $epsilon$~Eridani~bs properties: RVs, absolute astrometry measurements from the Hipparcos~and Gaia~missions, and new Keck/NIRC2 Ms-band vortex coronagraph images. We combine this data in a Bayesian framework. We find a new mass, $M_b$ = $0.66_{-0.09}^{+0.12}$~M$_{Jup}$, and inclination, $i$ = $77.95_{-21.06}^{circ+28.50}$, with at least a factor 2 improvement over previous uncertainties. We also report updated constraints on the longitude of the ascending node, the argument of the periastron, and the time of periastron passage. With these updated parameters, we can better predict the position of the planet at any past and future epoch, which can greatly help define the strategy and planning of future observations and with subsequent data analysis. In particular, these results can assist the search for a direct detection with JWST and the Nancy Grace Roman Space Telescopes coronagraph instrument (CGI).



rate research

Read More

We measure dynamical masses for five objects--three ultracool dwarfs, one low-mass star, and one white dwarf--by fitting orbits to a combination of the Hipparcos-Gaia Catalog of Accelerations, literature radial velocities, and relative astrometry. Our approach provides precise masses without any assumptions about the primary star, even though the observations typically cover only a small fraction of an orbit. We also perform a uniform re-analysis of the host stars ages. Two of our objects, HD 4747B and HR 7672B, already have precise dynamical masses near the stellar/substellar boundary and are used to validate our approach. For Gl 758B, we obtain a mass of $m=38.1_{-1.5}^{+1.7}$ $M_{Jup}$, the most precise mass measurement of this companion to date. Gl 758B is the coldest brown dwarf with a dynamical mass, and the combination of our low mass and slightly older host-star age resolves its previously noted discrepancy with substellar evolutionary models. HD 68017B, a late-M dwarf, has a mass of $m=0.147pm 0.003$ $M_odot$, consistent with stellar theory and previous empirical estimates based on its absolute magnitude. The progenitor of the white dwarf Gl 86B has been debated in the literature, and our dynamical measurement of $m=0.595 pm 0.010$ $M_odot$ is consistent with a higher progenitor mass and younger age for this planet-hosting binary system. Overall, these case studies represent only five of the thousands of accelerating systems identified by combining Hipparcos and Gaia. Our analysis could be repeated for many of them to build a large sample of companions with dynamical masses.
Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity.
We present a revision to the visual orbit of the young, directly-imaged exoplanet 51 Eridani b using four years of observations with the Gemini Planet Imager. The relative astrometry is consistent with an eccentric ($e=0.53_{-0.13}^{+0.09}$) orbit at an intermediate inclination ($i=136_{-11}^{+10}$,deg), although circular orbits cannot be excluded due to the complex shape of the multidimensional posterior distribution. We find a semi-major axis of $11.1_{-1.3}^{+4.2}$,au and a period of $28.1_{-4.9}^{+17.2}$,yr, assuming a mass of 1.75,M$_{odot}$ for the host star. We find consistent values with a recent analysis of VLT/SPHERE data covering a similar baseline. We investigated the potential of using absolute astrometry of the host star to obtain a dynamical mass constraint for the planet. The astrometric acceleration of 51~Eri derived from a comparison of the {it Hipparcos} and {it Gaia} catalogues was found to be inconsistent at the 2--3$sigma$ level with the predicted reflex motion induced by the orbiting planet. Potential sources of this inconsistency include a combination of random and systematic errors between the two astrometric catalogs or the signature of an additional companion within the system interior to current detection limits. We also explored the potential of using {it Gaia} astrometry alone for a dynamical mass measurement of the planet by simulating {it Gaia} measurements of the motion of the photocenter of the system over the course of the extended eight-year mission. We find that such a measurement is only possible ($>98$% probability) given the most optimistic predictions for the {it Gaia} scan astrometric uncertainties for bright stars, and a high mass for the planet ($gtrsim3.6$,M$_{rm Jup}$).
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 ms, which corresponds to a separation between the two components at the time of the observations of 18 $pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record pairs of spectra rotated by 180 degrees, thus reducing systematic effects. We compute and provide the function expressing the shift of the centroid of a seeing-limited image in the presence of a narrow slit.The proposed technique is simple to use and our test shows that it is amenable for deriving astrometry with milli-arcsecond accuracy or better, beyond the diffraction limit of the telescope. The technique can be further improved by using simple devices to simultaneously record the spectra with 180 degrees angles.With tachoastrometry, radial velocities and astrometric positions can be measured simultaneously for many double line system binaries in an easy way. The method is not limited to binary stars, but can be applied to any astrophysical configuration in which spectral lines are generated by separate (non-rotational symmetric) regions.
(abridged) The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113500 stars using a 23-year baseline. The proper motions will use the Hipparcos data, with epoch 1991.25, as first epoch and the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 muas/yr, depending on stellar magnitude. Depending on the characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence level. We also identify 109 stars for which radial velocities are currently unknown yet need to be acquired to meet the 68.27% confidence level. To satisfy the radial-velocity requirements coming from our study will be a daunting task consuming a significant amount of spectroscopic telescope time. Fortunately, the follow-up spectroscopy is not time-critical since the HTPM proper motions can be corrected a posteriori once (improved) radial velocities become available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا