Competing magnetic states in transition metal dichalcogenide moire materials


Abstract in English

Small-twist-angle transition metal dichalcogenide (TMD) heterobilayers develop isolated flat moire bands that are approximately described by triangular lattice generalized Hubbard models [PhysRevLett.121.026402]. In this article we explore the metallic and insulating states that appear under different control conditions at a density of one-electron per moire period, and the transitions between them. By combining fully self-consistent Hartree-Fock theory calculations with strong-coupling expansions around the atomic limit, we identify four different magnetic states and one nonmagnetic state near the model phase diagrams metal-insulator phase-transition line. Ferromagnetic insulating states, stabilized by non-local direct exchange interactions, are surprisingly prominent.

Download