Evidence of multithermal nature of spicular downflows. Impact on solar atmospheric heating


Abstract in English

Spectroscopic observations of the emission lines formed in the solar transition region (TR) commonly show persistent downflows of the order of 10--15 km/s. The cause of such downflows, however, is still not fully clear and has remained a matter of debate. We aim to understand the cause of such downflows by studying the coronal and TR responses to the recently reported chromospheric downflowing rapid red shifted excursions (RREs), and their impact on heating the solar atmosphere. We have used two sets of coordinated data from SST, IRIS, and SDO for analyzing the response of the downflowing RREs in the TR and corona. To provide theoretical support, we use an already existing 2.5D MHD simulation of spicules performed with the Bifrost code. We find ample occurrences of downflowing RREs and show several examples of their spatio-temporal evolution, sampling multiple wavelength channels ranging from the cooler chromospheric to hotter coronal channels. These downflowing features are thought to be likely associated with the returning components of the previously heated spicular plasma. Furthermore, the TR Doppler shifts associated with them are close to the average red shifts observed in this region which further implies that these flows could (partly) be responsible for the persistent downflows observed in the TR. We also propose two mechanisms (a typical upflow followed by a downflow and downflows along a loop), from the perspective of numerical simulation, that could explain the ubiquitous occurrence of such downflows. A detailed comparison between the synthetic and observed spectral characteristics, reveals a distinctive match, and further suggests an impact on the heating of the solar atmosphere. We present evidence that suggests that at least some of the downflowing RREs are the chromospheric counterparts of the TR and lower coronal downflows.

Download