Do you want to publish a course? Click here

On the non-existence of stepped-pressure equilibria far from symmetry

55   0   0.0 ( 0 )
 Added by Zhisong Qu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Stepped Pressure Equilibrium Code (SPEC) [Hudson et al., Phys. Plasmas 19, 112502 (2012)] has been successful in the construction of equilibria in 3D configurations that contain a mixture of flux surfaces, islands and chaotic magnetic field lines. In this model, the plasma is sliced into sub-volumes separated by ideal interfaces, and in each volume the magnetic field is a Beltrami field. In the cases where the system is far from possessing a continuous symmetry, such as in stellarators, the existence of solutions to a stepped-pressure equilibrium with given constraints, such as a multi-region relaxed MHD minimum energy state, is not guaranteed but is often taken for granted. Using SPEC, we have studied two different scenarios in which a solution fails to exist in a slab with analytic boundary perturbations. We found that with a large boundary perturbation, a certain interface becomes fractal, corresponding to the break up of a Kolmogorov-Arnold-Moser (KAM) surface. Moreover, an interface can only support a maximum pressure jump while a solution of the magnetic field consistent with the force balance condition can be found. An interface closer to break-up can support a smaller pressure jump. We discovered that the pressure jump can push the interface closer to being non-smooth through force balance, thus significantly decreasing the maximum pressure it can support. Our work shows that a convergence study must be performed on a SPEC equilibrium with interfaces close to break-up. These results may also provide insights into the choice of interfaces and have applications in finding out the maximum pressure a machine can support.



rate research

Read More

Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated.
Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With $p_parallel/p_perp approx 1.5$, $p_perp$ can vary 20% on $s=0.5$ flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which $p^*=(p_parallel + p_perp)/2$, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with $p_parallel/p_perp approx 1.25$, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current.
The Multi-region Relaxed MHD (MRxMHD) has been successful in the construction of equilibria in three-dimensional (3D) configurations. In MRxMHD, the plasma is sliced into sub-volumes separated by ideal interfaces, each undergoing relaxation, allowing the formation of islands and chaos. The resulting equilibrium has a stepped pressure profile across sub-volumes. The Stepped Pressure Equilibrium Code (SPEC) [S.R. Hudson et al., Phys. Plasmas 19, 112502 (2012)] was developed to calculate MRxMHD equilibria numerically. In this work, we have extended the SPEC code to compute MRxMHD equilibria with field-aligned flow and rotation, following the theoretical development to incorporate cross-helicity and angular momentum constraints. The code has been verified for convergence and compared to a Grad-Shafranov solver in 2D. We apply our new tool to study the flow profile change before and after the sawtooth crash of a reversed-field pinch discharge, in which data of the parallel flow is available. We find the promising result that under the constraints of cross-helicity and angular momentum, the parallel flow profile in post-crash SPEC equilibrium is flat in the plasma core and the amplitude of the flow matches experimental observations. Finally, we provide an example equilibrium with a 3D helical field structure as the favoured lower energy state. This will be the first 3D numerical equilibrium in which the flow effects are self-consistently calculated.
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.
70 - J. W. Burby , N. Kallinikos , 2020
The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic PDE in two space dimensions. By revealing a hidden symmetry, we show that in fact all smooth solutions of the equilibrium equations with non-vanishing pressure gradients away from the magnetic axis satisfy a generalization of the Grad-Shafranov equation. In contrast to solutions of the classical Grad-Shafranov equation, solutions of he generalized equation are not automatically equilibria, but instead only satisfy force balance averaged over the one-parameter hidden symmetry. We then explain how the generalized Grad-Shafranov equation can be used to reformulate the problem of finding exact three-dimensional smooth solutions of the equilibrium equations as finding an optimal volume-preserving symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا