No Arabic abstract
In this paper, we establish two gap theorems for ends of smooth metric measure space $(M^n, g,e^{-f}dv)$ with the Bakry-Emery Ricci tensor $mathrm{Ric}_fge-(n-1)$ in a geodesic ball $B_o(R)$ with radius $R$ and center $oin M^n$. When $mathrm{Ric}_fge 0$ and $f$ has some degeneration (including sublinear growth) outside $B_o(R)$, we show that there exists an $epsilon=epsilon(n,sup_{B_o(1)}|f|)$ such that such a manifold has at most two ends if $Rleepsilon$. When $mathrm{Ric}_fgefrac 12$ and $f(x)lefrac 14d^2(x,B_o(R))+c$ for some constant $c>0$ outside $B_o(R)$, we can also get the same gap conclusion.
We obtain a compact Sobolev embedding for $H$-invariant functions in compact metric-measure spaces, where $H$ is a subgroup of the measure preserving bijections. In Riemannian manifolds, $H$ is a subgroup of the volume preserving diffeomorphisms: a compact embedding for the critical exponents follows. The results can be viewed as an extension of Sobolev embeddings of functions invariant under isometries in compact manifolds.
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed analytic tool has close ties to integral geometry.
In this paper, we will prove the Weyls law for the asymptotic formula of Dirichlet eigenvalues on metric measure spaces with generalized Ricci curvature bounded from below.
In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li-Yaus estimate for weak solutions of the heat equation and prove a sharp Yaus gradient gradient for harmonic functions on metric measure spaces, under the Riemannian curvature-dimension condition $RCD^*(K,N).$
We examine volume pinching problems of CAT(1) spaces. We characterize a class of compact geodesically complete CAT(1) spaces of small specific volume. We prove a sphere theorem for compact CAT(1) homology manifolds of small volume. We also formulate a criterion of manifold recognition for homology manifolds on volume growths under an upper curvature bound.