Do you want to publish a course? Click here

A Systematic Assessment on Android Third-party Library Detection Tools

84   0   0.0 ( 0 )
 Added by Xian Zhan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Third-party libraries (TPLs) have become a significant part of the Android ecosystem. Developers can employ various TPLs to facilitate their app development. Unfortunately, the popularity of TPLs also brings new security issues. For example, TPLs may carry malicious or vulnerable code, which can infect popular apps to pose threats to mobile users. Furthermore, TPL detection is essential for downstream tasks, such as vulnerabilities and malware detection. Thus, various tools have been developed to identify TPLs. However, no existing work has studied these TPL detection tools in detail, and different tools focus on different applications and techniques with performance differences. A comprehensive understanding of these tools will help us make better use of them. To this end, we conduct a comprehensive empirical study to fill the gap by evaluating and comparing all publicly available TPL detection tools based on six criteria: accuracy of TPL construction, effectiveness, efficiency, accuracy of version identification, resiliency to code obfuscation, and ease of use. Besides, we enhance these open-source tools by fixing their limitations, to improve their detection ability. Finally, we build an extensible framework that integrates all existing available TPL detection tools, providing an online service for the research community. We release the evaluation dataset and enhanced tools. According to our study, we also present the essential findings and discuss promising implications to the community. We believe our work provides a clear picture of existing TPL detection techniques and also gives a roadmap for future research.



rate research

Read More

Third-party libraries (TPLs) have been widely used in mobile apps, which play an essential part in the entire Android ecosystem. However, TPL is a double-edged sword. On the one hand, it can ease the development of mobile apps. On the other hand, it also brings security risks such as privacy leaks or increased attack surfaces (e.g., by introducing over-privileged permissions) to mobile apps. Although there are already many studies for characterizing third-party libraries, including automated detection, security and privacy analysis of TPLs, TPL attributes analysis, etc., what strikes us odd is that there is no systematic study to summarize those studies endeavors. To this end, we conduct the first systematic literature review on Android TPL-related research. Following a well-defined systematic literature review protocol, we collected 74 primary research papers closely related to the Android third-party library from 2012 to 2020. After carefully examining these studies, we designed a taxonomy of TPL-related research studies and conducted a systematic study to summarize current solutions, limitations, challenges and possible implications of new research directions related to third-party library analysis. We hope that these contributions can give readers a clear overview of existing TPL-related studies and inspire them to go beyond the current status quo by advancing the discipline with innovative approaches.
This demo paper presents the technical details and usage scenarios of $mu$SE: a mutation-based tool for evaluating security-focused static analysis tools for Android. Mutation testing is generally used by software practitioners to assess the robustness of a given test-suite. However, we leverage this technique to systematically evaluate static analysis tools and uncover and document soundness issues. $mu$SEs analysis has found 25 previously undocumented flaws in static data leak detection tools for Android. $mu$SE offers four mutation schemes, namely Reachability, Complex-reachability, TaintSink, and ScopeSink, which determine the locations of seeded mutants. Furthermore, the user can extend $mu$SE by customizing the API calls targeted by the mutation analysis. $mu$SE is also practical, as it makes use of filtering techniques based on compilation and execution criteria that reduces the number of ineffective mutations.
Background. Developers use Automated Static Analysis Tools (ASATs) to control for potential quality issues in source code, including defects and technical debt. Tool vendors have devised quite a number of tools, which makes it harder for practitioners to select the most suitable one for their needs. To better support developers, researchers have been conducting several studies on ASATs to favor the understanding of their actual capabilities. Aims. Despite the work done so far, there is still a lack of knowledge regarding (1) which source quality problems can actually be detected by static analysis tool warnings, (2) what is their agreement, and (3) what is the precision of their recommendations. We aim at bridging this gap by proposing a large-scale comparison of six popular static analysis tools for Java projects: Better Code Hub, CheckStyle, Coverity Scan, Findbugs, PMD, and SonarQube. Method. We analyze 47 Java projects and derive a taxonomy of warnings raised by 6 state-of-the-practice ASATs. To assess their agreement, we compared them by manually analyzing - at line-level - whether they identify the same issues. Finally, we manually evaluate the precision of the tools. Results. The key results report a comprehensive taxonomy of ASATs warnings, show little to no agreement among the tools and a low degree of precision. Conclusions. We provide a taxonomy that can be useful to researchers, practitioners, and tool vendors to map the current capabilities of the tools. Furthermore, our study provides the first overview on the agreement among different tools as well as an extensive analysis of their precision.
Validation of Android apps via testing is difficult owing to the presence of flaky tests. Due to non-deterministic execution environments, a sequence of events (a test) may lead to success or failure in unpredictable ways. In this work, we present an approach and tool FlakeShovel for detecting flaky tests through systematic exploration of event orders. Our key observation is that for a test in a mobile app, there is a testing framework thread which creates the test events, a main User-Interface (UI) thread processing these events, and there may be several other background threads running asynchronously. For any event e whose execution involves potential non-determinism, we localize the earliest (latest) event after (before) which e must happen.We then efficiently explore the schedules between the upper/lower bound events while grouping events within a single statement, to find whether the test outcome is flaky. We also create a suite of subject programs called DroidFlaker to study flaky tests in Android apps. Our experiments on subject-suite DroidFlaker demonstrate the efficacy of our flaky test detection. Our work is complementary to existing flaky test detection tools like Deflaker which check only failing tests. FlakeShovel can detect flaky tests among passing tests, as shown by our approach and experiments.
Mobile application security has been one of the major areas of security research in the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance, and are hence soundy. Unfortunately, the specific unsound choices or flaws in the design of these tools are often not known or well-documented, leading to a misplaced confidence among researchers, developers, and users. This paper proposes the Mutation-based soundness evaluation ($mu$SE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix, flaws, by leveraging the well-founded practice of mutation analysis. We implement $mu$SE as a semi-automated framework, and apply it to a set of prominent Android static analysis tools that detect private data leaks in apps. As the result of an in-depth analysis of one of the major tools, we discover 13 undocumented flaws. More importantly, we discover that all 13 flaws propagate to tools that inherit the flawed tool. We successfully fix one of the flaws in cooperation with the tool developers. Our results motivate the urgent need for systematic discovery and documentation of unsound choices in soundy tools, and demonstrate the opportunities in leveraging mutation testing in achieving this goal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا