The Fermi Large Area Telescope has detected over 260 gamma-ray pulsars. About one quarter of these are labeled as radio-quiet. In the population of nonrecycled gamma-ray pulsars, the fraction of radio-quiet pulsars is higher, about one half. Most radio observations of gamma-ray pulsars have been performed at frequencies between 300 MHz and 2 GHz. However, pulsar radio fluxes increase rapidly with decreasing frequency, and their radio beams often broaden at low frequencies. As a consequence, some of these pulsars might be detectable at low radio frequencies even when no radio flux is detected above 300 MHz. Our aim is to test this hypothesis with low-frequency radio observations. We have observed 27 Fermi-discovered gamma-ray pulsars with the international LOw Frequency ARray (LOFAR) station FR606 in single-station mode. We used the LOFAR high band antenna (HBA) band (110-190 MHz). On average, we use 9 h of observation per target after the removal of affected datasets, resulting in a sensitivity for pulse-averaged flux on the order of 1-10 mJy. We do not detect radio pulsations from any of the 27 sources, and we establish stringent upper limits on their low-frequency radio fluxes. These nondetections are compatible with the upper limits derived from radio observations at other frequencies. We also determine the pulsars geometry from the gamma-ray profiles to see for which pulsars the low-frequency radio beam is expected to cross Earth. This set of observations provides the most constraining upper limits on the flux density at 150 MHz for 27 radio-quiet gamma-ray pulsars. In spite of the beam-widening expected at low radio frequencies, most of our nondetections can be explained by an unfavorable viewing geometry; for the remaining observations, especially those of pulsars detected at higher frequencies, the nondetection is compatible with insufficient sensitivity.