Do you want to publish a course? Click here

Avoiding the Great Filter: A Projected Timeframe for Human Expansion Off-World

99   0   0.0 ( 0 )
 Added by Jonathan Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A foundational model has been developed based on trends built from empirical data of space exploration and computing power through the first six plus decades of the Space Age which projects earliest possible launch dates for human-crewed missions from cis-lunar space to selected Solar System and interstellar destinations. The model uses computational power, expressed as transistors per microprocessor, as a key broadly limiting factor for deep space missions reach and complexity. The goal of this analysis is to provide a projected timeframe for humanity to become a multi-world species through off-world colonization, and in so doing all but guarantees the long-term survival of the human race from natural and human-caused calamities that could befall life on Earth. Be-ginning with the development and deployment of the first nuclear weapons near the end of World War II, humanity entered a Window of Peril which will not be safely closed until robust off-world colonies become a reality. Our findings suggest the first human-crewed missions to land on Mars, selected Asteroid Belt objects, and selected moons of Jupiter and Saturn can occur before the end of the 21st century. Launches of human-crewed interstellar missions to exoplanet destinations within roughly 40 lightyears of the Solar System are seen as possible during the 23rd century and launch of intragalactic missions by the end of the 24th century. An aggressive and sustained space exploration program, which includes colonization, is thus seen as critical to the long-term survival of the human race.



rate research

Read More

79 - Claire L. Davies 2021
The great conjunction of 21 December 2020 saw Jupiter and Saturn appear together in the sky, separated by just a tenth of a degree (equivalent to a distance five times smaller than the diameter of the full Moon). This provided a potential once-in-a-lifetime opportunity to view the solar systems two biggest planets - and up to five of their moons - through a telescope eyepiece at the same time. Moreover, this was the first such opportunity, ever; previous observable conjunctions at similarly close separations took place before the development of the telescope in the early 1600s. Our team of scientists from the University of Exeters Astrophysics Group and Exeter Science Centre worked with local social enterprises to develop a series of promotional and concurrent events to tie in with our live telescope broadcast of Jupiter and Saturn, to celebrate this spectacular celestial event. We hoped not only to inform and educate the public about great conjunctions, and the solar system more generally, but also to bring some light relief in what had been a rather difficult year.
Newly discovered descriptions about the great aurora observed in March 1582 are presented in this work. These records were made by Portuguese observers from Lisbon. Both records described the aurora like a great fire in the northern part of the sky. It was observed during three consecutive nights, according to one of the sources. Thus, we present a discussion of these auroral records in order to complement other works that studied the aurora sighted in March 1582.
69 - S.J. Tingay , C.D. Tremblay , 2018
Following from the results of the first systematic modern low frequency Search for Extraterrestrial Intelligence (SETI) using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a Galactic Anticenter field. Using the MWA in the frequency range of 99 to 122 MHz over a three hour period, a 625 sq. deg. field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrow band signals consistent with radio transmissions from intelligent civilisations. No such signals were found with a 5-sigma detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center Tingay et al.(2016), since the Galactic Center sample is dominated by exoplanets detected using microlensing, hence at much larger distances compared to the exoplants toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmiter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results.
96 - Deepak Dhar 2017
In this article, I discuss the relationship of mathematics to the physical world, and to other spheres of human knowledge. In particular, I argue that Mathematics is created by human beings, and the number $pi$ can not be said to have existed $100,000$ years ago, using the conventional meaning of the word `exist.
Parabolic flights provide cost-effective, time-limited access to weightless or reduced gravity conditions experienced in space or on planetary surfaces, e.g. the Moon or Mars. These flights facilitate fundamental research - from materials science to space biology - and testing/validation activities that support and complement infrequent and costly access to space. While parabolic flights have been conducted for decades, reference acceleration profiles and processing methods are not widely available - yet are critical for assessing the results of these activities. Here we present a method for collecting, analyzing, and classifying the altered gravity environments experienced during a parabolic flight. We validated this method using a commercially available accelerometer during a Boeing 727-200F flight with $20$ parabolas. All data and analysis code are freely available. Our solution can be easily integrated with a variety of experimental designs, does not depend upon accelerometer orientation, and allows for unsupervised and repeatable classification of all phases of flight, providing a consistent and open-source approach to quantifying gravito-intertial accelerations (GIA), or $g$ levels. As academic, governmental, and commercial use of space increases, data availability and validated processing methods will enable better planning, execution, and analysis of parabolic flight experiments, and thus, facilitate future space activities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا