Do you want to publish a course? Click here

Boulders on Mercury

78   0   0.0 ( 0 )
 Added by Maria Gritsevich
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Boulders on the surfaces of planets, satellites and small bodies, as well as their geological associations, provide important information about surface processes. We analyzed all available images of the surface of Mercury that have sufficient resolution and quality to detect boulders, and we mapped all the boulders observed. The lower size limit of detectable boulders was ~5 m. All boulders found on Mercury are associated with fresh impact craters hundreds of meters in diameter or larger. We compared boulder population on Mercury with population of boulders of the same size on the Moon, and found that boulders on Mercury are ~30 times less abundant than in the lunar highlands. This exact quantitative estimate is inherently inaccurate due to the limitation in the source data; however, the significant relative rarity of boulders on Mercury can be firmly and reliably established. We discuss possible causes of the observed difference. Higher thermal stresses and more rapid material fatigue due to diurnal temperature cycling on Mercury may cause rapid disintegration of the upper decimeters of the boulder surface and thus contribute to more rapid boulder obliteration; however, these factors alone cannot account for the observed difference. A proposed thicker regolith on Mercury is likely to significantly reduce boulder production rate. A higher micrometeoritic flux on Mercury is likely to result in micrometeoritic abrasion being a dominant contributor to boulder degradation; this high abrasion rate likely shortens the boulder lifetime. A combination of these factors appears to be able to account for the relative rarity of boulders on Mercury.



rate research

Read More

We mapped all boulders larger than 105 m on the surface of dwarf planet Ceres using images of the Dawn framing camera acquired in the Low Altitude Mapping Orbit (LAMO). We find that boulders on Ceres are more numerous towards high latitudes and have a maximum lifetime of $150 pm 50$ Ma, based on crater counts. These characteristics are distinctly different from those of boulders on asteroid (4) Vesta, an earlier target of Dawn, which implies that Ceres boulders are mechanically weaker. Clues to their properties can be found in the composition of Ceres complex crust, which is rich in phyllosilicates and salts. As water ice is though to be present only meters below the surface, we suggest that boulders also harbor ice. Furthermore, the boulder size-frequency distribution is best fit by a Weibull distribution rather than the customary power law, just like for Vesta boulders. This finding is robust in light of possible types of size measurement error.
A small number of anomalously bright boulders on the near-Earth, rubble-pile asteroid (101955) Bennu were recently identified as eucritic material originating from asteroid (4) Vesta. Building on this discovery, we explored the global presence of exogenic boulders on Bennu. Our analysis focused on boulders larger than 1 m that show the characteristic 1-micron pyroxene absorption band in the four-color MapCam data from the OSIRIS-REx mission. We confirm the presence of exogenic boulders similar to eucrites and find that mixtures of eucrites with carbonaceous material is also a possible composition for some boulders. Some of the exogenic boulders have spectral properties similar to those of ordinary chondrite (OC) meteorites, although the laboratory spectra of these meteorites have a higher albedo than those measured on Bennu, which could be explained by either a grain size effect, the presence of impact melt, or optical mixing with carbonaceous material owing to dust coating. Our Monte Carlo simulations predict that the median amount of OC mass added to the parent body of Bennu is 0.055% and 0.037% of the volume of a 100- and 200-km-diameter parent body, respectively. If Bennu was a uniformly mixed byproduct of parent body and S-type projectiles, the equivalent mass of OC material would be a sphere with a diameter of 36 to 40 m (or a volume of 24,200 to 33,600 m3). The total amount of OC material in the interior of Bennu estimated from the MapCam data is slightly higher (91,000-150,000 m3).
Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Kepler space telescope has allowed us to detect planets that are the size of Earth and somewhat smaller, but no previous planets have been found that are smaller than those we see in our own Solar System. Here we report the discovery of a planet significantly smaller than Mercury. This tiny planet is the innermost of three planets that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of Earths Moon, and highly irradiated surface, Kepler-37b is probably a rocky planet with no atmosphere or water, similar to Mercury.
The origin of Mercurys high iron-to-rock ratio is still unknown. In this work we investigate Mercurys formation via giant impacts and consider the possibilities of a single giant impact, a hit-and-run, and multiple collisions in one theoretical framework. We study the standard collision parameters (impact velocity, mass ratio, impact parameter), along with the impactors composition and the cooling of the target. It is found that the impactors composition affects the iron distribution within the planet and the final mass of the target by up to 15%, although the resulting mean iron fraction is similar. We suggest that an efficient giant impact requires to be head-on with high velocities, while in the hit-and-run case the impact can occur closer to the most probable collision angle (45$^{circ}$). It is also shown that Mercurys current iron-to-rock ratio can be a result of multiple-collisions, with their exact number depending on the collision parameters. Mass loss is found to be more significant when the collisions are tight in time.
Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercurys orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N-body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to obtain accurate estimates of the probability of a Mercury instability event between 2 and 3 billion years in the future in the REBOUND N-body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا