Bayesian spectral density approach for identification and uncertainty quantification of bridge sections flutter derivatives operated in turbulent flow


Abstract in English

This study presents a Bayesian spectral density approach for identification and uncertainty quantification of flutter derivatives of bridge sections utilizing buffeting displacement responses, where the wind tunnel test is conducted in turbulent flow. Different from traditional time-domain approaches (e.g., least square method and stochastic subspace identification), the newly-proposed approach is operated in frequency domain. Based on the affine invariant ensemble sampler algorithm, Markov chain Monte-Carlo sampling is employed to accomplish the Bayesian inference. The probability density function of flutter derivatives is modeled based on complex Wishart distribution, where probability serves as the measure. By the Bayesian spectral density approach, the most probable values and corresponding posterior distributions (namely identification uncertainty here) of each flutter derivative can be obtained at the same time. Firstly, numerical simulations are conducted and the identified results are accurate. Secondly, thin plate model, flutter derivatives of which have theoretical solutions, is chosen to be tested in turbulent flow for the sake of verification. The identified results of thin plate model are consistent with the theoretical solutions. Thirdly, the center-slotted girder model, which is widely-utilized long-span bridge sections in current engineering practice, is employed to investigate the applicability of the proposed approach on a general bridge section. For the center-slotted girder model, the flutter derivatives are also extracted by least square method in uniform flow to cross validate the newly-proposed approach. The identified results by two different approaches are compatible.

Download