The first two decades of the 21st century have witnessed remarkable progress in harnessing the power of quantum mechanics, on-chip, enabled by the development in epitaxial semiconductor nanoscience with proof-of-principle demonstrations -- many tour-de force -- of quantum functionalities such as entanglement and teleportation amongst photon and matter qubits ---quintessential quantum phenomena that underpin the development of quantum technologies. A basic hindrance to such development however has been the absence of a platform of on-demand single photon sources (SPSs) with adequate spectral characteristics and arranged in spatially regular arrays necessary for their incorporation in surrounding light manipulation units to enable quantum networks. Here we report on the first spatially-ordered, scalable platform of deterministic, bright, spectrally highly uniform, pure, and indistinguishable SPSs. At 19.5K, and without Purcell enhancement, these SPSs exhibit emission purity ~99.2% and two-photon interference (TPI) indistinguishability ~57%. Oscillation behavior of the photon emission indicates that the photons originate from a coherent superposition of two excitonic states, revealing effectively a three-level electronic structure which can be exploited as potential two-frequency qubit generating energy entangled photons for teleportation. Time-dependent two photon interference (Hong-Ou Mandel interferometry) coincidence counts g(2)({tau}) near {tau}=0 show effectively zero count which, analyzed using the three-level model, reveals a highly encouraging dephasing time of ~0.58ns at ~20K. Such SPS arrays in a planarized structure open the pathway to creating interconnected quantum networks for application in communication, sensing, computing and more.