Mergers of double neutron stars (DNSs) could lead to the formation of a long-lived massive remnant NS, which has been previously suggested to explain the AT 2017gfo kilonova emission in the famous GW170817 event. For an NS-affected kilonova, it is expected that a non-thermal emission component can be contributed by a pulsar wind nebula (PWN), which results from the interaction of the wind from the remnant NS with the preceding merger ejecta. Then, the discovery of such a non-thermal PWN emission can provide an evidence for the existence of the remnant NS. Similar to GRB 170817A, GRB 160821B is also one of the nearest short gamma-ray bursts (SGRBs). A candidate kilonova is widely believed to appear in the ultraviolet-optical-infrared afterglows of GRB 160821B. Here, by modeling the afterglow light curves and spectra of GRB 160821B, we find that the invoking of a non-thermal PWN emission can indeed be well consistent with the observational data. This may indicate that the formation of a stable massive NS could be not rare in the DNS merger events and, thus, the equation of state of the post-merger NSs should be stiff enough.