No Arabic abstract
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around conditions where the resonator exhibits strong anomalous dispersion, recent studies have shown that solitons with unique characteristics and dynamics can arise under conditions of near-zero-dispersion driving. Here we report on experimental studies of the existence and stability dynamics of Kerr CSs under such conditions. In particular, we experimentally probe the solitons range of existence and examine how their breathing instabilities are modified when group-velocity dispersion is close to zero, such that higher-order dispersion terms play a significant role. On the one hand, our experiments directly confirm earlier theoretical works that predict (i) breathing near-zero-dispersion solitons to emit polychromatic dispersive radiation, and (ii) that higher-order dispersion can extend the range over which the solitons are stable. On the other hand, our experiments also reveal a novel cross-over scenario, whereby the influence of higher-order dispersion changes from stabilising to destabilising. Our comprehensive experiments sample soliton dynamics both in the normal and anomalous dispersion regimes, and our results are in good agreement with numerical simulations and theoretical predictions.
Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fiber pumped by a continuous-wave holding laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.
Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems and fall into two separate classes, that of bright solitons, formed in the anomalous group velocity dispersion regime, and `dark solitons in the normal dispersion regime. Both types of soliton have been observed in BEC, hydrodynamics, polaritons, and mode locked lasers, but have been particularly relevant to the generation of chipscale microresonator-based frequency combs (microcombs), used in numerous system level applications in timing, spectroscopy, and communications. For microcombs, both bright solitons, and alternatively dark pulses based on interlocking switching waves, have been studied. Yet, the existence of localized dissipative structures that fit between this dichotomy has been theoretically predicted, but proven experimentally elusive. Here we report the discovery of dissipative structures that embody a hybrid between switching waves and dissipative solitons, existing in the regime of (nearly) vanishing group velocity dispersion where third-order dispersion is dominant, hence termed as `zero-dispersion solitons. These dissipative structures are formed via collapsing switching wave fronts, forming clusters of quantized solitonic sub-structures. The switching waves are formed directly via synchronous pulse-driving of a photonic chip-based Si3N4 microresonator. The resulting frequency comb spectrum is extremely broad in both the switching wave and zero-dispersion soliton regime, reaching 136 THz or 97% of an octave. Fourth-order dispersion engineering results in dual-dispersive wave formation, and a novel quasi-phase matched wave related to Faraday instability. This exotic unanticipated dissipative structure expands the domain of Kerr cavity physics to the regime near zero-dispersion and could present a superior alternative to conventional solitons for broadband comb generation.
We examine a coherently-driven, dispersion-managed, passive Kerr fiber ring resonator and report the first direct experimental observation of dispersive wave emission by temporal cavity solitons. Our observations are in excellent agreement with analytical predictions and they are fully corroborated by numerical simulations. These results lead to a better understanding of the behavior of temporal cavity solitons under conditions where higher-order dispersion plays a significant role. Significantly, since temporal cavity solitons manifest themselves in monolithic microresonators, our results are likely to explain the origins of spectral features observed in broadband Kerr frequency combs.
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.
Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two techniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal cavity soliton excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators.