Do you want to publish a course? Click here

Volumetric dose extension for isodose tuning

295   0   0.0 ( 0 )
 Added by Lin Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: To develop a model to generate volumetric dose distribution from two isodose surfaces (iso-surfaces), and to interactively tune dose distribution by iso-surface dragging. Methods: We model volumetric dose distribution as analytical extension of two iso-surfaces with the extension variables as distances to iso-surfaces. We built a 3D lookup table (LUT) which are generated based on clinical dose distributions. Two LUT tables store the mean and standard deviation of voxel dose values of clinical doses and binned as distance to 100% iso-surface, reference iso-surface and reference dose level. The process of interactive tuning starts from a given base plan. A user drags iso-surface for a desired carving. Our method responds with tuned dose. The derivation of tuned dose follows two steps. Dose is extended from the two user-desired iso-surfaces (eg.100% and 50%) to the whole patient volume by table lookup, using distances to two iso-surfaces and reference dose level as keys. Then we fine tune the extended dose by a correction strategy utilizing the information of base plan. Results: We validated this method on coplanar VMAT doses of post-operative prostate plans. The LUT was populated by dose distributions of 27 clinical plans. We optimized two plans with different rectum sparing for an independent case to mimic the process of dose tuning. The plan with less rectum sparing is set as base plan. The 50% iso-surface of the more-sparing plan is defined as the desired iso-surface input. The dose output by our method (expansion and correction) agrees with the more-sparing plan obtained by optimization, in terms of gamma (97.2%), DVH and profiles. The overall dose reconstruction time is within two seconds. Conclusion: We developed a distance-to-isosurface based volumetric dose reconstruction method, and applied it to interactive tuning with iso-surface dragging.



rate research

Read More

Purpose: To verify dose delivery and quality assurance of volumetric modulated arc therapy (VMAT) for head and neck cancer. Method: The Imaging and Radiation Oncology Core Houston (IROC-H) head and neck phantom with thermo- luminescent dosimeters (TLDs) and films, were imaged with computed tomography scan and the reconstructed image was transferred to pinnacle treatment planning system (TPS). On TPS the planning target volume (PTV), secondary target volume (STV) and organ at risk (OAR) were delineated manually and a treatment plan was made. The dose constraints were determined for the concerned organs according to IROC-H prescription. The treatment plan was optimized using adoptive convolution algorithm to improve dose homogeneity and conformity. The dose calculation was performed using C.C Convolution algorithm and a Varian True Beam linear accelerator was used to deliver the treatment plan to the head and neck phantom. The delivered radiation dose to the phantom was measured through TLDs and GafChromic EBT2 films. The dosimetric performance of the VMAT delivery was studied by analysing percent dose difference, iso-dose line profile and gamma analysis of the TPS computed dose and linac delivered doses. Result: the percent dose difference of 3.8% was observed between the planned and measured doses of TLDs and a 1.5mm distance to agreement (DTA) was observed by comparing iso-dose line profiles. Passed the gamma criteria of 3%/3 mm was with good percentages. Conclusion: The dosimetric performance of VMAT delivery for a challenging head and neck radiotherapy can be verified using TLDs and films imbedded in an anthropomorphic H&N phantom.
A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single proton pencil beam of $30^circ$ incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.
68 - S. Safai 2018
This paper focuses on some dosimetry aspects of proton therapy and pencil beam scanning based on the experience accumulated at Paul Scherrer Institute(PSI). The basic formalism for absolute dosimetry in proton therapy is outlined and the two main techniques and equipment to perform the primary beam monitor chamber calibration are presented. Depth-dose curve and lateral beam width measurements are exposed and discussed in detail, with particular attention to the size of the ionization chamber and the characteristic of scintillating-CCD dosimetry systems, respectively. It is also explained how the angular-spatial distribution of individual pencil beams can be determined in practice. The equipment and the techniques for performing regularmachine-specific quality checks are focused on (i)output constancy checks, (ii)pencil beam position and size checks and (iii)beam energy checks. Finally, patient-specific verification is addressed.
In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical survey for hypofractionation based on an actual prostate-cancer treatment of carbon-ion radiotherapy. The proposed formulation was demonstrated to be practical and to offer theoretical implications. In the prostate-cancer case, the ERD distribution was very similar to the RBE-weighted-dose distribution of the actual treatment in 12 fractions. With hypofractionation, while the RBE-weighted-dose distribution varied significantly, the ERD distribution was nearly invariant, implying that the carbon-ion radiotherapy would be insensitive to fractionation. However, treatment evaluation with simplistic biological dose is intrinsically limited and must be complemented in practice somehow by clinical experiences and biology experiments.
Introduction: Treating pregnant women in the radiotherapy clinic is a rare occurrence. When it does occur, it is vital that the dose received by the developing embryo or foetus is understood as fully as possible. This study presents the first investigation of foetal doses delivered during helical tomotherapy treatments. Materials & Methods: Six treatment plans were delivered to an anthropomorphic phantom using a tomotherapy machine. These included treatments of the brain, unilateral and bilateral head-and-neck, chest wall, and upper lung. Measurements of foetal dose were made with an ionisation chamber positioned at various locations longitudinally within the phantom to simulate a variety of patient anatomies. Results: All measurements were below the established limit of 100 mGy for a high risk of damage during the first trimester. The largest dose encountered was 75 mGy (0.125% of prescription dose). The majority of treatments with measurement positions less than 30 cm fell into the range of uncertain risk (50 - 100 mGy). All treatments with measurement positions beyond 30 cm fell into the low risk category (< 50 mGy). Conclusions: For the cases in this study, tomotherapy resulted in foetal doses that are at least on par with, if not significantly lower than, similar 3D conformal or intensity-modulated treatments delivered with other devices. Recommendations were also provided for estimating foetal doses from tomotherapy plans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا