Do you want to publish a course? Click here

Stability of Numerical Solution to Pantograph Stochastic Functional Differential Equations

160   0   0.0 ( 0 )
 Added by Hao Wu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the convergence of the Euler-Maruyama numerical solutions for pantograph stochastic functional differential equations which was proposed in [11]. We also show that the numerical solutions have the properties of almost surely polynomial stability and exponential stability with the help of semi-martingale convergence theorem.



rate research

Read More

In this paper, we study a new type of stochastic functional differential equations which is called hybrid pantograph stochastic functional differential equations. We investigate several moment properties and sample properties of the solutions to the equations by using the method of multiple Lyapunov functions, such as the moment exponential stability, almost sure exponential stability and almost sure polynomial stability, etc.
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate of convergence in a suitable $L^1$-norm and we implement the scheme numerically. To the best of our knowledge this is the first paper to study (and implement) numerical solutions of SDEs whose drift lives in a space of distributions. As a byproduct we also obtain an estimate of the convergence rate for a numerical scheme applied to SDEs with drift in $L^p$-spaces with $pin(1,infty)$.
This paper studies the convergence of the tamed Euler-Maruyama (EM) scheme for a class of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the drift coefficients satisfy the super-linear growth condition. We provide the existence and uniqueness of strong solutions to MV-NSDDEs. Then, we use a stochastic particle method, which is based upon the theory of the propagation of chaos between particle system and the original MV-NSDDE, to deal with the approximation of the law. Moreover, we obtain the convergence rate of tamed EM scheme with respect to the corresponding particle system. Combining the result of propagation of chaos and the convergence rate of the numerical solution to the particle system, we get a convergence error between the numerical solution and exact solution of the original MV-NSDDE in the stepsize and number of particles.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftytimes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
We study a stochastic differential equation driven by a gamma process, for which we give results on the existence of weak solutions under conditions on the volatility function. To that end we provide results on the density process between the laws of solutions with different volatility functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا