Do you want to publish a course? Click here

Implementation of Perdew-Zunger self-interaction correction in real space using Fermi-Lowdin orbitals

75   0   0.0 ( 0 )
 Added by Rajendra Zope
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most widely used density functional approximations suffer from self-interaction (SI) error, which can be corrected using the Perdew-Zunger (PZ) self-interaction correction (SIC). We implement the recently proposed size-extensive formulation of PZ-SIC using Fermi-Lowdin Orbitals (FLOs) in real space, which is amenable to systematic convergence and large-scale parallelization. We verify the new formulation within the generalized Slater scheme by computing atomization energies and ionization potentials of selected molecules and comparing to those obtained by existing FLOSIC implementations in Gaussian based codes. The results show good agreement between the two formulations, with new real-space results somewhat closer to experiment on average for the systems considered. We also obtain the ionization potentials and atomization energies by scaling down the Slater statistical average of SIC potentials. The results show that scaling down the average SIC potential improves both atomization energies and ionization potentials, bringing them closer to experiment. Finally, we verify the present formulation by calculating the barrier heights of chemical reactions in the BH6 dataset, where significant improvements are obtained relative to Gaussian based FLOSIC results.



rate research

Read More

The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by LSIC, local scaling of the PZ-SIC to the local spin density approximation(LSDA). Here we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of atomic number Z in the asymptotic expansion of the exchange-correlation(xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator z{sigma}, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof(PBE) generalized gradient approximation(GGA), and almost as well as the strongly constrained and appropriately normed(SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, both fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled-down SIC to functionals beyond LSDA requires a gauge transformation of the functionals energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.
The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights or dissociation energies but results in over-correcting the properties well described by SI-uncorrected semi-local functional. One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction of each orbital in the many electron region. We have implemented the orbitalwise scaled down SI-correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi-Lowdin SI-correction method. After validating the OSIC implementation with previously reported OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation and reaction energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the $-1/r$ asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides more balanced description of total energies and barrier heights.
(Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them compared to quasi-particle calculations. The inaccuracy for the HO is attributed to SIE inherent in DFAs. We assessed the IE based on Perdew-Zunger self-interaction corrections on 14 small to moderate-sized organic molecules relevant in organic electronics and polymer donor materials. Though self-interaction corrected DFAs were found to significantly improve the IE relative to the uncorrected DFAs, they overestimate. However, when the self-interaction correction is interiorly scaled using a function of the iso-orbital indicator z{sigma}, only the regions where SIE is significant get a correction. We discuss these approaches and show how these methods significantly improve the description of the HO eigenvalue for the organic molecules.
Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on an orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky and Perdew proposes restricting the unitary transformation to localized orbitals called Fermi-Lowdin orbitals. This formulation, called the FLOSIC method, simplifies PZ-SIC calculations and was implemented self-consistently using a Jacobi-like (FLOSIC-Jacobi) iteration scheme. In this work we implement the FLOSIC approach using the Krieger-Li-Iafrate (KLI) approximation to the optimized effective potential (OEP). We compare the results of present FLOSIC-KLI approach with FLOSIC-Jacobi scheme for atomic energies, atomization energies, ionization energies, barrier heights, polarizability of chains of hydrogen molecules etc. to validate the FLOSIC-KLI approach. The FLOSIC-KLI approach, which is within the realm of Kohn-Sham theory, predicts smaller energy gaps between frontier orbitals due to the lowering of eigenvalues of the lowest unoccupied orbitals. Results show that atomic energies, atomization energies, ionization energy as an absolute of highest occupied orbital eigenvalue, and polarizability of chains of hydrogen molecules between the two methods agree within 2%. Finally the FLOSIC-KLI approach is used to determine the vertical ionization energies of water clusters.
Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SI corrections should be applied. Using this local-scaling SIC (LSIC) approach with LSDA, we analyze predictions for a wide range of properties including, for atoms, total energies, ionization potentials, and electron affinities, and for molecules, atomization energies, dissociation energy curves, reaction energies, and reaction barrier heights. LSIC preserves the results of PZSIC-LSDA for properties where it is successful and provides dramatic improvements for many of the other properties studied. Atomization energies calculated using LSIC are better than those of the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation (GGA) and close to those obtained with the Strongly Constrained and Appropriately Normed (SCAN) meta-GGA. LSIC also restores the uniform gas limit for the exchange energy that is lost in PZSIC-LSDA. Further performance improvements may be obtained by an appropriate combination or modification of the local scaling factor and the particular density functional approximation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا