Do you want to publish a course? Click here

Inverse seesaw in $A_5^prime$ modular symmetry

71   0   0.0 ( 0 )
 Added by Dr. Rukmani Mohanta
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We make an investigation of modular $Gamma^{prime}_5 simeq A^{prime}_5$ group in inverse seesaw framework. Modular symmetry is advantageous because it reduces the usage of extra scalar fields significantly. Moreover, the Yukawa couplings are expressed in terms of Dedekind eta functions, which also have a $q$ expansion form, utilized to achieve numerical simplicity. Our proposed model includes six heavy fermion superfields i.e., $mathcal{N}_{Ri}$, $mathcal{S}_{Li}$ and a weighton. The study of neutrino phenomenology becomes simplified and effective by the usage of $A^prime_5$ modular symmetry, which provides us a well defined mass structure for the lepton sector. Here, we observe that all the neutrino oscillation parameters, as well as the effective electron neutrino mass in neutrinoless double beta decay can be accommodated in this model. We also briefly discuss the lepton flavor violating decays $ell_i to ell_j gamma$ and comment on non-unitarity of lepton mixing matrix.



rate research

Read More

We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw mechanism. Then we can obtain some predictions in neutrino sector such as Dirac-CP phase and sum of neutrino mass, which are shown by our numerical analysis. Besides the relation among masses of heavy pseudo-Dirac neutrino can be obtained since it is also restricted by the modular symmetry. We also discuss implications to lepton flavor violation and collider physics in our model.
We discuss type-II seesaw models adopting modular $A_4$ symmetry in supersymmetric framework. In our approach, the models are classified by the assignment of $A_4$ representations and modular weights for leptons and triplet Higgs fields. Then neutrino mass matrix is characterized by modulus $tau$ and two free parameters. Carrying out numerical analysis, we find allowed parameter sets which can fit the neutrino oscillation data. For the allowed parameter sets, we obtain the predictions in neutrino sector such as CP violating phases and the lightest neutrino mass. Finally we also show the predictions for the branching ratios of doubly charged scalar boson focusing on the case where the doubly charged scalar boson dominantly decays into charged leptons.
106 - Xinyi Zhang , Shun Zhou 2021
In this paper, we present a systematic investigation on simple inverse seesaw models for neutrino masses and flavor mixing based on the modular $S^{}_4$ symmetry. Two right-handed neutrinos and three extra fermion singlets are introduced to account for light neutrino masses through the inverse seesaw mechanism, and to provide a keV-mass sterile neutrino as the candidate for warm dark matter in our Universe. Considering all possible modular forms with weights no larger than four, we obtain twelve models, among which we find one is in excellent agreement with the observed lepton mass spectra and flavor mixing. Moreover, we explore the allowed range of the sterile neutrino mass and mixing angles, by taking into account the direct search of $X$-ray line and the Lyman-$alpha$ observations. The model predictions for neutrino mixing parameters and the dark matter abundance will be readily testable in future neutrino oscillation experiments and cosmological observations.
The inverse neutrino seesaw, characterised by only one source of lepton number violation at an ultralight $O$(keV) scale and observable new phenomena at TeV energies accessible to the LHC, is considered. Maximal zero textures of the $3times 3$ lighter and heavier Dirac mass matrices of neutral leptons, appearing in the Lagarangian for such an inverse seesaw, are studied within the framework of $mutau$ symmetry in a specified weak basis. That symmetry ensures the identity of the positions of maximal zeros of the heavy neutrino mass matrix and its inverse. It then suffices to study the maximal zeros of the lighter Dirac mass matrix and those of the inverse of the heavier one since they come in a product. The observed absence of any unmixed neutrino flavour and the assumption of no strictly massless physical neutrino state allow only eight $4$-zero $times$ $4$-zero, eight $4$-zero $times$ $6$-zero and eight $6$-zero $times$ $4$-zero combinations. The additional requirement of leptogenesis is shown to eliminate the last sixteen textures. The surviving eight $4$-zero $times$ $4$-zero textures are subjected to the most general explicit $mutau$ symmetry breaking terms in the Lagrangian in order to accommodate the nonzero value of $theta_{13}$ in the observed range. A full diagonalisation is then carried out. On numerical comparison with all extant and relevant neutrino (antineutrino) data, seven of these eight combination textures in five neutrino matrix forms are found to be allowed, leading to five distinct neutrino mass matrices. Two of these permit only a normal (and the other three only an inverted) mass ordering of the light neutrinos.
We study a class of general U$(1)^prime$ models to explain the observed dark matter relic abundance and light neutrino masses. The model contains three right handed neutrinos and three gauge singlet Majorana fermions to generate the light neutrino mass via the inverse seesaw mechanism. We assign one pair of degenerate sterile neutrinos to be the dark matter candidate whose relic density is generated by the freeze-in mechanism. We consider different regimes of the masses of the dark matter particle and the ${Z^prime}$ gauge boson. The production of the dark matter can occur at different reheating temperatures in various scenarios depending on the masses of the ${Z^prime}$ boson and the dark matter candidate. We also note that if the mass of the sterile neutrino dark matter is $gtrsim 1 rm{MeV}$ and if the $Z^prime$ is heavier than the dark matter, the decay of the dark matter candidate into positrons can explain the long standing puzzle of the galactic $511rm{keV}$ line in the Milky Way center observed by the INTEGRAL satellite. We constrain the model parameters from the dark matter analysis, vacuum stability and the collider searches of heavy ${Z^prime}$ at the LHC. For the case with light $Z^prime$, we also compare how far the parameter space allowed from dark matter relic density can be probed by the future lifetime frontier experiments SHiP and FASERs in the special case of $U(1)_{B-L}$ model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا