Do you want to publish a course? Click here

RFC-HyPGCN: A Runtime Sparse Feature Compress Accelerator for Skeleton-Based GCNs Action Recognition Model with Hybrid Pruning

328   0   0.0 ( 0 )
 Added by Yang Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Skeleton-based Graph Convolutional Networks (GCNs) models for action recognition have achieved excellent prediction accuracy in the field. However, limited by large model and computation complexity, GCNs for action recognition like 2s-AGCN have insufficient power-efficiency and throughput on GPU. Thus, the demand of model reduction and hardware acceleration for low-power GCNs action recognition application becomes continuously higher. To address challenges above, this paper proposes a runtime sparse feature compress accelerator with hybrid pruning method: RFC-HyPGCN. First, this method skips both graph and spatial convolution workloads by reorganizing the multiplication order. Following spatial convolution workloads channel-pruning dataflow, a coarse-grained pruning method on temporal filters is designed, together with sampling-like fine-grained pruning on time dimension. Later, we come up with an architecture where all convolutional layers are mapped on chip to pursue high throughput. To further reduce storage resource utilization, online sparse feature compress format is put forward. Features are divided and encoded into several banks according to presented format, then bank storage is split into depth-variable mini-banks. Furthermore, this work applies quantization, input-skipping and intra-PE dynamic data scheduling to accelerate the model. In experiments, proposed pruning method is conducted on 2s-AGCN, acquiring 3.0x-8.4x model compression ratio and 73.20% graph-skipping efficiency with balancing weight pruning. Implemented on Xilinx XCKU-115 FPGA, the proposed architecture has the peak performance of 1142 GOP/s and achieves up to 9.19x and 3.91x speedup over high-end GPU NVIDIA 2080Ti and NVIDIA V100, respectively. Compared with latest accelerator for action recognition GCNs models, our design reaches 22.9x speedup and 28.93% improvement on DSP efficiency.



rate research

Read More

127 - Haodong Duan , Yue Zhao , Kai Chen 2021
Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many skeleton-based action recognition methods adopt graph convolutional networks (GCN) to extract features on top of human skeletons. Despite the positive results shown in previous works, GCN-based methods are subject to limitations in robustness, interoperability, and scalability. In this work, we propose PoseC3D, a new approach to skeleton-based action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of human skeletons. Compared to GCN-based methods, PoseC3D is more effective in learning spatiotemporal features, more robust against pose estimation noises, and generalizes better in cross-dataset settings. Also, PoseC3D can handle multiple-person scenarios without additional computation cost, and its features can be easily integrated with other modalities at early fusion stages, which provides a great design space to further boost the performance. On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
Action recognition based on skeleton data has recently witnessed increasing attention and progress. State-of-the-art approaches adopting Graph Convolutional networks (GCNs) can effectively extract features on human skeletons relying on the pre-defined human topology. Despite associated progress, GCN-based methods have difficulties to generalize across domains, especially with different human topological structures. In this context, we introduce UNIK, a novel skeleton-based action recognition method that is not only effective to learn spatio-temporal features on human skeleton sequences but also able to generalize across datasets. This is achieved by learning an optimal dependency matrix from the uniform distribution based on a multi-head attention mechanism. Subsequently, to study the cross-domain generalizability of skeleton-based action recognition in real-world videos, we re-evaluate state-of-the-art approaches as well as the proposed UNIK in light of a novel Posetics dataset. This dataset is created from Kinetics-400 videos by estimating, refining and filtering poses. We provide an analysis on how much performance improves on smaller benchmark datasets after pre-training on Posetics for the action classification task. Experimental results show that the proposed UNIK, with pre-training on Posetics, generalizes well and outperforms state-of-the-art when transferred onto four target action classification datasets: Toyota Smarthome, Penn Action, NTU-RGB+D 60 and NTU-RGB+D 120.
113 - Lei Shi , Yifan Zhang , Jian Cheng 2021
Existing methods for skeleton-based action recognition mainly focus on improving the recognition accuracy, whereas the efficiency of the model is rarely considered. Recently, there are some works trying to speed up the skeleton modeling by designing light-weight modules. However, in addition to the model size, the amount of the data involved in the calculation is also an important factor for the running speed, especially for the skeleton data where most of the joints are redundant or non-informative to identify a specific skeleton. Besides, previous works usually employ one fix-sized model for all the samples regardless of the difficulty of recognition, which wastes computations for easy samples. To address these limitations, a novel approach, called AdaSGN, is proposed in this paper, which can reduce the computational cost of the inference process by adaptively controlling the input number of the joints of the skeleton on-the-fly. Moreover, it can also adaptively select the optimal model size for each sample to achieve a better trade-off between accuracy and efficiency. We conduct extensive experiments on three challenging datasets, namely, NTU-60, NTU-120 and SHREC, to verify the superiority of the proposed approach, where AdaSGN achieves comparable or even higher performance with much lower GFLOPs compared with the baseline method.
292 - Maosen Li , Siheng Chen , Xu Chen 2019
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correlations. To capture richer dependencies, we introduce an encoder-decoder structure, called A-link inference module, to capture action-specific latent dependencies, i.e. actional links, directly from actions. We also extend the existing skeleton graphs to represent higher-order dependencies, i.e. structural links. Combing the two types of links into a generalized skeleton graph, we further propose the actional-structural graph convolution network (AS-GCN), which stacks actional-structural graph convolution and temporal convolution as a basic building block, to learn both spatial and temporal features for action recognition. A future pose prediction head is added in parallel to the recognition head to help capture more detailed action patterns through self-supervision. We validate AS-GCN in action recognition using two skeleton data sets, NTU-RGB+D and Kinetics. The proposed AS-GCN achieves consistently large improvement compared to the state-of-the-art methods. As a side product, AS-GCN also shows promising results for future pose prediction.
Spatial-temporal graphs have been widely used by skeleton-based action recognition algorithms to model human action dynamics. To capture robust movement patterns from these graphs, long-range and multi-scale context aggregation and spatial-temporal dependency modeling are critical aspects of a powerful feature extractor. However, existing methods have limitations in achieving (1) unbiased long-range joint relationship modeling under multi-scale operators and (2) unobstructed cross-spacetime information flow for capturing complex spatial-temporal dependencies. In this work, we present (1) a simple method to disentangle multi-scale graph convolutions and (2) a unified spatial-temporal graph convolutional operator named G3D. The proposed multi-scale aggregation scheme disentangles the importance of nodes in different neighborhoods for effective long-range modeling. The proposed G3D module leverages dense cross-spacetime edges as skip connections for direct information propagation across the spatial-temporal graph. By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets: NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا