Do you want to publish a course? Click here

Relationships between Software Architecture and Source Code in Practice: An Exploratory Survey and Interview

96   0   0.0 ( 0 )
 Added by Peng Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Context: Software Architecture (SA) and Source Code (SC) are two intertwined artefacts that represent the interdependent design decisions made at different levels of abstractions - High-Level (HL) and Low-Level (LL). An understanding of the relationships between SA and SC is expected to bridge the gap between SA and SC for supporting maintenance and evolution of software systems. Objective: We aimed at exploring practitioners understanding about the relationships between SA and SC. Method: We used a mixed-method that combines an online survey with 87 respondents and an interview with 8 participants to collect the views of practitioners from 37 countries about the relationships between SA and SC. Results: Our results reveal that: practitioners mainly discuss five features of relationships between SA and SC; a few practitioners have adopted dedicated approaches and tools in the literature for identifying and analyzing the relationships between SA and SC despite recognizing the importance of such information for improving a systems quality attributes, especially maintainability and reliability. It is felt that cost and effort are the major impediments that prevent practitioners from identifying, analyzing, and using the relationships between SA and SC. Conclusions: The results have empirically identified five features of relationships between SA and SC reported in the literature from the perspective of practitioners and a systematic framework to manage the five features of relationships should be developed with dedicated approaches and tools considering the cost and benefit of maintaining the relationships.



rate research

Read More

Software architecture refers to the high-level abstraction of a system including the configuration of the involved elements and the interactions and relationships that exist between them. Source codes can be easily built by referring to the software architectures. However, the reverse process i.e. derivation of the software architecture from the source code is a challenging task. Further, such an architecture consists of multiple layers, and distributing the existing elements into these layers should be done accurately and efficiently. In this paper, a novel approach is presented for the recovery of layered architectures from Java-based software systems using the concept of ego networks. Ego networks have traditionally been used for social network analysis, but in this paper, they are modified in a particular way and tuned to suit the mentioned task. Specifically, a dependency network is extracted from the source code to create an ego network. The ego network is processed to create and optimize ego layers in a particular structure. These ego layers when integrated and optimized together give the final layered architecture. The proposed approach is evaluated in two ways: on stat
Software engineers working in large projects must navigate complex information landscapes. Change Impact Analysis (CIA) is a task that relies on engineers successful information seeking in databases storing, e.g., source code, requirements, design descriptions, and test case specifications. Several previous approaches to support information seeking are task-specific, thus understanding engineers seeking behavior in specific tasks is fundamental. We present an industrial case study on how engineers seek information in CIA, with a particular focus on traceability and development artifacts that are not source code. We show that engineers have different information seeking behavior, and that some do not consider traceability particularly useful when conducting CIA. Furthermore, we observe a tendency for engineers to prefer less rigid types of support rather than formal approaches, i.e., engineers value support that allows flexibility in how to practically conduct CIA. Finally, due to diverse information seeking behavior, we argue that future CIA support should embrace individual preferences to identify change impact by empowering several seeking alternatives, including searching, browsing, and tracing.
Natural language comments convey key aspects of source code such as implementation, usage, and pre- and post-conditions. Failure to update comments accordingly when the corresponding code is modified introduces inconsistencies, which is known to lead to confusion and software bugs. In this paper, we aim to detect whether a comment becomes inconsistent as a result of changes to the corresponding body of code, in order to catch potential inconsistencies just-in-time, i.e., before they are committed to a code base. To achieve this, we develop a deep-learning approach that learns to correlate a comment with code changes. By evaluating on a large corpus of comment/code pairs spanning various comment types, we show that our model outperforms multiple baselines by significant margins. For extrinsic evaluation, we show the usefulness of our approach by combining it with a comment update model to build a more comprehensive automatic comment maintenance system which can both detect and resolve inconsistent comments based on code changes.
Authorship attribution (i.e., determining who is the author of a piece of source code) is an established research topic. State-of-the-art results for the authorship attribution problem look promising for the software engineering field, where they could be applied to detect plagiarized code and prevent legal issues. With this article, we first introduce a new language-agnostic approach to authorship attribution of source code. Then, we discuss limitations of existing synthetic datasets for authorship attribution, and propose a data collection approach that delivers datasets that better reflect aspects important for potential practical use in software engineering. Finally, we demonstrate that high accuracy of authorship attribution models on existing datasets drastically drops when they are evaluated on more realistic data. We outline next steps for the design and evaluation of authorship attribution models that could bring the research efforts closer to practical use for software engineering.
In the domain of software engineering, our efforts as researchers to advise industry on which software practices might be applied most effectively are limited by our lack of evidence based information about the relationships between context and practice efficacy. In order to accumulate such evidence, a model for context is required. We are in the exploratory stage of evolving a model for context for situated software practices. In this paper, we overview the evolution of our proposed model. Our analysis has exposed a lack of clarity in the meanings of terms reported in the literature. Our base model dimensions are People, Place, Product and Process. Our contributions are a deepening of our understanding of how to scope contextual factors when considering software initiatives and the proposal of an initial theoretical construct for context. Study limitations relate to a possible subjectivity in the analysis and a restricted evaluation base. In the next stage in the research, we will collaborate with academics and practitioners to formally refine the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا