We study the role of the Standard Model Higgs condensate, formed during cosmological inflation, in the epoch of reheating that follows. We focus on the scenario where the inflaton decays slowly and perturbatively, so that there is a long period between the end of inflation and the beginning of radiation domination. The Higgs condensate decays non-perturbatively during this period, and we show that it heats the primordial plasma to much higher temperatures than would result from the slowly-decaying inflaton alone. We discuss the effect of this hot plasma on the thermalization of the inflatons decay products, and study its phenomenological implications for the formation of cosmological relics like dark matter, with associated isocurvature fluctuations, and the restoration of the electroweak and Peccei-Quinn symmetries.