Do you want to publish a course? Click here

Communication-Efficient Federated Learning via Predictive Coding

115   0   0.0 ( 0 )
 Added by Kai Yue
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due to limited power and bandwidth. Prior work has utilized various data compression tools such as quantization and sparsification to reduce the overhead. In this paper, we propose a predictive coding based communication scheme for federated learning. The scheme has shared prediction functions among all devices and allows each worker to transmit a compressed residual vector derived from the reference. In each communication round, we select the predictor and quantizer based on the rate-distortion cost, and further reduce the redundancy with entropy coding. Extensive simulations reveal that the communication cost can be reduced up to 99% with even better learning performance when compared with other baseline methods.



rate research

Read More

Federated learning (FL) has attracted tremendous attentions in recent years due to its privacy preserving measures and great potentials in some distributed but privacy-sensitive applications like finance and health. However, high communication overloads for transmitting high-dimensional networks and extra security masks remains a bottleneck of FL. This paper proposes a communication-efficient FL framework with Adaptive Quantized Gradient (AQG) which adaptively adjusts the quantization level based on local gradients update to fully utilize the heterogeneousness of local data distribution for reducing unnecessary transmissions. Besides, the client dropout issues are taken into account and the Augmented AQG is developed, which could limit the dropout noise with an appropriate amplification mechanism for transmitted gradients. Theoretical analysis and experiment results show that the proposed AQG leads to 25%-50% of additional transmission reduction as compared to existing popular methods including Quantized Gradient Descent (QGD) and Lazily Aggregated Quantized (LAQ) gradient-based method without deteriorating convergence properties. Particularly, experiments with heterogenous data distributions corroborate a more significant transmission reduction compared with independent identical data distributions. Meanwhile, the proposed AQG is robust to a client dropping rate up to 90% empirically, and the Augmented AQG manages to further improve the FL systems communication efficiency with the presence of moderate-scale client dropouts commonly seen in practical FL scenarios.
Communication complexity and privacy are the two key challenges in Federated Learning where the goal is to perform a distributed learning through a large volume of devices. In this work, we introduce FedSKETCH and FedSKETCHGATE algorithms to address both challenges in Federated learning jointly, where these algorithms are intended to be used for homogeneous and heterogeneous data distribution settings respectively. The key idea is to compress the accumulation of local gradients using count sketch, therefore, the server does not have access to the gradients themselves which provides privacy. Furthermore, due to the lower dimension of sketching used, our method exhibits communication-efficiency property as well. We provide, for the aforementioned schemes, sharp convergence guarantees. Finally, we back up our theory with various set of experiments.
Federated learning is widely used to learn intelligent models from decentralized data. In federated learning, clients need to communicate their local model updates in each iteration of model learning. However, model updates are large in size if the model contains numerous parameters, and there usually needs many rounds of communication until model converges. Thus, the communication cost in federated learning can be quite heavy. In this paper, we propose a communication efficient federated learning method based on knowledge distillation. Instead of directly communicating the large models between clients and server, we propose an adaptive mutual distillation framework to reciprocally learn a student and a teacher model on each client, where only the student model is shared by different clients and updated collaboratively to reduce the communication cost. Both the teacher and student on each client are learned on its local data and the knowledge distilled from each other, where their distillation intensities are controlled by their prediction quality. To further reduce the communication cost, we propose a dynamic gradient approximation method based on singular value decomposition to approximate the exchanged gradients with dynamic precision. Extensive experiments on benchmark datasets in different tasks show that our approach can effectively reduce the communication cost and achieve competitive results.
364 - Ji Liu , Jizhou Huang , Yang Zhou 2021
In recent years, data and computing resources are typically distributed in the devices of end users, various regions or organizations. Because of laws or regulations, the distributed data and computing resources cannot be directly shared among different regions or organizations for machine learning tasks. Federated learning emerges as an efficient approach to exploit distributed data and computing resources, so as to collaboratively train machine learning models, while obeying the laws and regulations and ensuring data security and data privacy. In this paper, we provide a comprehensive survey of existing works for federated learning. We propose a functional architecture of federated learning systems and a taxonomy of related techniques. Furthermore, we present the distributed training, data communication, and security of FL systems. Finally, we analyze their limitations and propose future research directions.
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads. Recently, Ye and Abbe [ICML 2018] proposed a coding-theoretic paradigm to characterize a fundamental trade-off between computation load per worker, communication overhead per worker, and straggler tolerance. However, their proposed coding schemes suffer from heavy decoding complexity and poor numerical stability. In this paper, we develop a communication-efficient gradient coding framework to overcome these drawbacks. Our proposed framework enables using any linear code to design the encoding and decoding functions. When a particular code is used in this framework, its block-length determines the computation load, dimension determines the communication overhead, and minimum distance determines the straggler tolerance. The flexibility of choosing a code allows us to gracefully trade-off the straggler threshold and communication overhead for smaller decoding complexity and higher numerical stability. Further, we show that using a maximum distance separable (MDS) code generated by a random Gaussian matrix in our framework yields a gradient code that is optimal with respect to the trade-off and, in addition, satisfies stronger guarantees on numerical stability as compared to the previously proposed schemes. Finally, we evaluate our proposed framework on Amazon EC2 and demonstrate that it reduces the average iteration time by 16% as compared to prior gradient coding schemes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا