No Arabic abstract
Space weathering is a process that changes the surface of airless planetary bodies. Prime space weathering agents are solar wind irradiation and micrometeoroid bombardment. These processes alter planetary reflectance spectra and often modify their compositional diagnostic features. In this work we focused on simulating and comparing the spectral changes caused by solar wind irradiation and by micrometeoroid bombardment to gain a better understanding of these individual space weathering processes. We used olivine and pyroxene pellets as proxies for planetary materials. To simulate solar wind irradiation we used hydrogen, helium, and argon ions with energies from 5 to 40 keV and fluences of up to $10^{18}$ particles/cm$^2$. To simulate micrometeoroid bombardment we used individual femtosecond laser pulses. We analysed the corresponding evolution of different spectral parameters, which we determined by applying the Modified Gaussian Model, and we also conducted principal component analysis. The original mineralogy of the surface influences the spectral evolution more than the weathering agent, as seen from the diverse evolution of the spectral slope of olivine and pyroxene upon irradiation. The spectral slope changes seen in olivine are consistent with observations of A-type asteroids, while the moderate to no slope changes observed in pyroxene are consistent with asteroid (4) Vesta. We also observed some differences in the spectral effects induced by the two weathering agents. Ions simulating solar wind have a smaller influence on longer wavelengths of the spectra than laser irradiation simulating micrometeoroid impacts. This is most likely due to the different penetration depths of ions and laser pulses. Our results suggest that in some instances it might be possible to distinguish between the contributions of the two agents on a weathered surface.
Olivine and pyroxene are important mineral end-members for studying the sur-face material compositions of mafic bodies. The profiles of visible and near-infraredspectra of olivine-orthopyroxene mixtures systematically varied with their compositionratios. In our experiments, we combine the RELAB spectral database with a new spec-tral data obtained from some assembled olivine-orthopyroxene mixtures. We found thatthe commonly-used band area ratio (BAR, Cloutis et al. 1986) does not work well onour newly obtained spectral data. To investigate this issue, an empirical procedure basedon fitted results by modified Gaussian model is proposed to analyze the spectral curves.Following the new empirical procedure, the end-member abundances can be estimatedwith a 15% accuracy with some prior mineral absorption features. In addition, the mix-ture samples configured in our experiments are also irradiated by pulsed lasers to simulateand investigate the space weathering effects. Spectral deconvolution results confirm thatlow-content olivine on celestial bodies are difficult to measure and estimate. Therefore,the olivine abundance of space weathered materials may be underestimated from remotesensing data. This study may be used to quantify the spectral relationship of olivine-orthopyroxene mixtures and further reveal their correlation between the spectra of ordi-nary chondrites and silicate asteroids.
The aim of this work is to investigate contrasting spectral trends observed in carbonaceous chondrites by simulating space weathering effects on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces little reddening and darkening, but a pronounced reduction in band depths. Irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that npFe0 particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles results in the subsequent spectral bluing. The presence of npFe0 and possibly cronstedtite likely promotes the synthesis of these organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg- and Fe-rich aqueously altered minerals are dominant at different phases of the alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.
Using the narrowband all-sky imager mode of the LWA1 we have now detected 30 transients at 25.6 MHz, 1 at 34 MHz, and 93 at 38.0 MHz. While we have only optically confirmed that 37 of these events are radio afterglows from meteors, evidence suggests that most, if not all, are. Using the beam-forming mode of the LWA1 we have also captured the broadband spectra between 22.0 and 55.0 MHz of four events. We compare the smooth, spectral components of these four events and fit the frequency dependent flux density to a power law, and find that the spectral index is time variable, with the spectrum steepening over time for each meteor afterglow. Using these spectral indices along with the narrow band flux density measurements of the 123 events at 25.6 and 38 MHz, we predict the expected flux densities and rates for meteor afterglows potentially observable by other low frequency radio telescopes.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope of an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
Space-grade Si and GaAs solar cells were irradiated with 15 and 40 MeV lithium ions. Dark-IV analysis (with and without illumination) reveals differences in the effects of such irradiation on the different cell types