Do you want to publish a course? Click here

Learn to Match: Automatic Matching Network Design for Visual Tracking

243   0   0.0 ( 0 )
 Added by Zhipeng Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Siamese tracking has achieved groundbreaking performance in recent years, where the essence is the efficient matching operator cross-correlation and its variants. Besides the remarkable success, it is important to note that the heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. Thus, in this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. To this end, we propose binary channel manipulation (BCM) to search for the optimal combination of these operators. BCM determines to retrain or discard one operator by learning its contribution to other tracking steps. By inserting the learned matching networks to a strong baseline tracker Ocean, our model achieves favorable gains by $67.2 rightarrow 71.4$, $52.6 rightarrow 58.3$, $70.3 rightarrow 76.0$ success on OTB100, LaSOT, and TrackingNet, respectively. Notably, Our tracker, dubbed AutoMatch, uses less than half of training data/time than the baseline tracker, and runs at 50 FPS using PyTorch. Code and model will be released at https://github.com/JudasDie/SOTS.



rate research

Read More

Matching local features across images is a fundamental problem in computer vision. Targeting towards high accuracy and efficiency, we propose Seeded Graph Matching Network, a graph neural network with sparse structure to reduce redundant connectivity and learn compact representation. The network consists of 1) Seeding Module, which initializes the matching by generating a small set of reliable matches as seeds. 2) Seeded Graph Neural Network, which utilizes seed matches to pass messages within/across images and predicts assignment costs. Three novel operations are proposed as basic elements for message passing: 1) Attentional Pooling, which aggregates keypoint features within the image to seed matches. 2) Seed Filtering, which enhances seed features and exchanges messages across images. 3) Attentional Unpooling, which propagates seed features back to original keypoints. Experiments show that our method reduces computational and memory complexity significantly compared with typical attention-based networks while competitive or higher performance is achieved.
Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations. To address this issue, we propose a simple yet effective visual tracking framework (named Siamese Box Adaptive Network, SiamBAN) by exploiting the expressive power of the fully convolutional network (FCN). SiamBAN views the visual tracking problem as a parallel classification and regression problem, and thus directly classifies objects and regresses their bounding boxes in a unified FCN. The no-prior box design avoids hyper-parameters associated with the candidate boxes, making SiamBAN more flexible and general. Extensive experiments on visual tracking benchmarks including VOT2018, VOT2019, OTB100, NFS, UAV123, and LaSOT demonstrate that SiamBAN achieves state-of-the-art performance and runs at 40 FPS, confirming its effectiveness and efficiency. The code will be available at https://github.com/hqucv/siamban.
The deep learning-based visual tracking algorithms such as MDNet achieve high performance leveraging to the feature extraction ability of a deep neural network. However, the tracking efficiency of these trackers is not very high due to the slow feature extraction for each frame in a video. In this paper, we propose an effective tracking algorithm to alleviate the time-consuming problem. Specifically, we design a deep flow collaborative network, which executes the expensive feature network only on sparse keyframes and transfers the feature maps to other frames via optical flow. Moreover, we raise an effective adaptive keyframe scheduling mechanism to select the most appropriate keyframe. We evaluate the proposed approach on large-scale datasets: OTB2013 and OTB2015. The experiment results show that our algorithm achieves considerable speedup and high precision as well.
Discriminant Correlation Filters (DCF) based methods now become a kind of dominant approach to online object tracking. The features used in these methods, however, are either based on hand-crafted features like HoGs, or convolutional features trained independently from other tasks like image classification. In this work, we present an end-to-end lightweight network architecture, namely DCFNet, to learn the convolutional features and perform the correlation tracking process simultaneously. Specifically, we treat DCF as a special correlation filter layer added in a Siamese network, and carefully derive the backpropagation through it by defining the network output as the probability heatmap of object location. Since the derivation is still carried out in Fourier frequency domain, the efficiency property of DCF is preserved. This enables our tracker to run at more than 60 FPS during test time, while achieving a significant accuracy gain compared with KCF using HoGs. Extensive evaluations on OTB-2013, OTB-2015, and VOT2015 benchmarks demonstrate that the proposed DCFNet tracker is competitive with several state-of-the-art trackers, while being more compact and much faster.
Visual tracking plays an important role in perception system, which is a crucial part of intelligent transportation. Recently, Siamese network is a hot topic for visual tracking to estimate moving targets trajectory, due to its superior accuracy and simple framework. In general, Siamese tracking algorithms, supervised by logistic loss and triplet loss, increase the value of inner product between exemplar template and positive sample while reduce the value of inner product with background sample. However, the distractors from different exemplars are not considered by mentioned loss functions, which limit the feature models discrimination. In this paper, a new exemplar loss integrated with logistic loss is proposed to enhance the feature models discrimination by reducing inner products among exemplars. Without the bells and whistles, the proposed algorithm outperforms the methods supervised by logistic loss or triplet loss. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا