Do you want to publish a course? Click here

First Law of Black Hole in the Gravitational Electromagnetic System

169   0   0.0 ( 0 )
 Added by Jie Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

After considering the quantum corrections of Einstein-Maxwell theory, the effective theory will contain some higher-curvature terms and nonminimally coupled electromagnetic fields. In this paper, we study the first law of black holes in the gravitational electromagnetic system with the Lagrangian $math{L}(g_{ab}, R_{abcd}, F_{ab})$. Firstly, we calculate the Noether charge and the variational identity in this theory, and then generically derive the first law of thermodynamics for an asymptotically flat stationary axisymmetrical symmetric black hole without the requirement that the electromagnetic field is smooth on the bifurcation surface. Our results indicate that the first law of black hole thermodynamics might be valid for the Einstein-Maxwell theory with some quantum corrections in the effective region.



rate research

Read More

168 - Lorenzo Rossi 2020
The first law of black hole mechanics has been the main motivation for investigating thermodynamic properties of black holes. The first version of this law was proved in cite{Bardeen:1973gs} by considering perturbations of an asymptotically flat, stationary black hole spacetime to other stationary black hole spacetimes. This result was then extended to fully general perturbations, first in the context of Einstein-Maxwell theory in cite{Sudarsky:1992ty},cite{Wald:1993ki}, and then in the context of a general diffeomorphism invariant theory of gravity with an arbitrary number of matter fields in cite{Wald:1993nt},cite{Iyer:1994ys}. Here a review of these two generalizations of the first law is presented, with particular attention to outlining the necessary formalisms and calculations in an explicit and thorough way, understandable at a graduate level. The open problem of defining the entropy for a dynamical black hole that satisfies a form of the second law of black hole mechanics is briefly discussed.
166 - Kai Shi , Yu Tian , Xiaoning Wu 2021
We provide a proof of the necessary and sufficient condition on the profile of the temperature, chemical potential, and angular velocity for a charged perfect fluid in dynamic equilibrium to be in thermodynamic equilibrium not only in fixed but also in dynamical electromagnetic and gravitational fields. In passing, we also present the corresponding expression for the first law of thermodynamics for such a charged star.
The black hole area theorem implies that when two black holes merge, the area of the final black hole should be greater than the sum of the areas of the two original black holes. We examine how this prediction can be tested with gravitational-wave observations of binary black holes. By separately fitting the early inspiral and final ringdown stages, we calculate the posterior distributions for the masses and spins of the two initial and the final black holes. This yields posterior distributions for the change in the area and thus a statistical test of the validity of the area increase law. We illustrate this method with a GW150914-like binary black hole waveform calculated using numerical relativity, and detector sensitivities representative of both the first observing run and the design configuration of Advanced LIGO. We obtain a $sim74.6%$ probability that the simulated signal is consistent with the area theorem with current sensitivity, improving to $sim99.9%$ when Advanced LIGO reaches design sensitivity. An important ingredient in our test is a method of estimating when the post-merger signal is well-fit by a damped sinusoid ringdown waveform.
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole black hole thermodynamics inconsistent. The possibility to relate the Renyi and Tsallis entropies with the quantum gravity corrected Bekenstein-Hawking entropy is discussed.
A graviton laser works, in principle, by the stimulated emission of coherent gravitons from a lasing medium. For significant amplification, we must have a very long path length and/or very high densities. Black holes and the existence of weakly interacting sub-eV dark matter particles (WISPs) solve both of these obstacles. Orbiting trajectories for massless particles around black holes are well understood cite{mtw} and allow for arbitrarily long graviton path lengths. Superradiance from Kerr black holes of WISPs can provide the sufficiently high density cite{ABH}. This suggests that black holes can act as efficient graviton lasers. Thus directed graviton laser beams have been emitted since the beginning of the universe and give rise to new sources of gravitational wave signals. To be in the path of particularly harmfully amplified graviton death rays will not be pleasant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا