Investigating Attention Mechanism in 3D Point Cloud Object Detection


Abstract in English

Object detection in three-dimensional (3D) space attracts much interest from academia and industry since it is an essential task in AI-driven applications such as robotics, autonomous driving, and augmented reality. As the basic format of 3D data, the point cloud can provide detailed geometric information about the objects in the original 3D space. However, due to 3D datas sparsity and unorderedness, specially designed networks and modules are needed to process this type of data. Attention mechanism has achieved impressive performance in diverse computer vision tasks; however, it is unclear how attention modules would affect the performance of 3D point cloud object detection and what sort of attention modules could fit with the inherent properties of 3D data. This work investigates the role of the attention mechanism in 3D point cloud object detection and provides insights into the potential of different attention modules. To achieve that, we comprehensively investigate classical 2D attentions, novel 3D attentions, including the latest point cloud transformers on SUN RGB-D and ScanNetV2 datasets. Based on the detailed experiments and analysis, we conclude the effects of different attention modules. This paper is expected to serve as a reference source for benefiting attention-embedded 3D point cloud object detection. The code and trained models are available at: https://github.com/ShiQiu0419/attentions_in_3D_detection.

Download