Do you want to publish a course? Click here

Synthetic Active Distribution System Generation via Unbalanced Graph Generative Adversarial Network

68   0   0.0 ( 0 )
 Added by Rong Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Real active distribution networks with associated smart meter (SM) data are critical for power researchers. However, it is practically difficult for researchers to obtain such comprehensive datasets from utilities due to privacy concerns. To bridge this gap, an implicit generative model with Wasserstein GAN objectives, namely unbalanced graph generative adversarial network (UG-GAN), is designed to generate synthetic three-phase unbalanced active distribution system connectivity. The basic idea is to learn the distribution of random walks both over a real-world system and across each phase of line segments, capturing the underlying local properties of an individual real-world distribution network and generating specific synthetic networks accordingly. Then, to create a comprehensive synthetic test case, a network correction and extension process is proposed to obtain time-series nodal demands and standard distribution grid components with realistic parameters, including distributed energy resources (DERs) and capacity banks. A Midwest distribution system with 1-year SM data has been utilized to validate the performance of our method. Case studies with several power applications demonstrate that synthetic active networks generated by the proposed framework can mimic almost all features of real-world networks while avoiding the disclosure of confidential information.



rate research

Read More

A framework for the generation of synthetic time-series transmission-level load data is presented. Conditional generative adversarial networks are used to learn the patterns of a real dataset of hourly-sampled week-long load profiles and generate unique synthetic profiles on demand, based on the season and type of load required. Extensive testing of the generative model is performed to verify that the synthetic data fully captures the characteristics of real loads and that it can be used for downstream power system and/or machine learning applications.
When designing large-scale distributed controllers, the information-sharing constraints between sub-controllers, as defined by a communication topology interconnecting them, are as important as the controller itself. Controllers implemented using dense topologies typically outperform those implemented using sparse topologies, but it is also desirable to minimize the cost of controller deployment. Motivated by the above, we introduce a compact but expressive graph recurrent neural network (GRNN) parameterization of distributed controllers that is well suited for distributed controller and communication topology co-design. Our proposed parameterization enjoys a local and distributed architecture, similar to previous Graph Neural Network (GNN)-based parameterizations, while further naturally allowing for joint optimization of the distributed controller and communication topology needed to implement it. We show that the distributed controller/communication topology co-design task can be posed as an $ell_1$-regularized empirical risk minimization problem that can be efficiently solved using stochastic gradient methods. We run extensive simulations to study the performance of GRNN-based distributed controllers and show that (a) they achieve performance comparable to GNN-based controllers while having fewer free parameters, and (b) our method allows for performance/communication density tradeoff curves to be efficiently approximated.
In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis.
117 - Zhi Chen , Jiang Duan , Li Kang 2021
Anomaly detection has wide applications in machine intelligence but is still a difficult unsolved problem. Major challenges include the rarity of labeled anomalies and it is a class highly imbalanced problem. Traditional unsupervised anomaly detectors are suboptimal while supervised models can easily make biased predictions towards normal data. In this paper, we present a new supervised anomaly detector through introducing the novel Ensemble Active Learning Generative Adversarial Network (EAL-GAN). EAL-GAN is a conditional GAN having a unique one generator vs. multiple discriminators architecture where anomaly detection is implemented by an auxiliary classifier of the discriminator. In addition to using the conditional GAN to generate class balanced supplementary training data, an innovative ensemble learning loss function ensuring each discriminator makes up for the deficiencies of the others is designed to overcome the class imbalanced problem, and an active learning algorithm is introduced to significantly reduce the cost of labeling real-world data. We present extensive experimental results to demonstrate that the new anomaly detector consistently outperforms a variety of SOTA methods by significant margins. The codes are available on Github.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on MNIST and CIFAR-10 datasets, evaluated on the generative adversarial metric and at semi-supervised image classification.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا